

DRAFT TRANSPORTATION SYSTEM PLAN

VOL. 2: APPENDIX

Warrenton, Oregon September 2018

VOLUME 2 APPENDIX TABLE OF CONTENTS

TECH MEMO ONE Public and Stakeholder Involvement Strategy

TECH MEMO TWO Background Document Review

TECH MEMO THREE Regulatory Review

TECH MEMO FOUR Goals, Objectives, and Evaluation Criteria

TECH MEMO FIVE Existing Conditions

Existing Conditions Appendix

TECH MEMO SIX Future Forecasting

TECH MEMO SEVEN

Future Transportation Conditions and Needs

Future Transportation Conditions and Needs Appendix

TECH MEMO EIGHT

Solutions Evaluation

Standards and Solutions Appendix

TECH MEMO NINE

Finance Program

TECH MEMO TEN

Transportation Standards

TECH MEMO ELEVEN

Alternative Mobility Targets

TECH MEMO TWELVE A

Implementing Regulations and Policy Amendments: Proposed Comprehensive Plan Amendments

JTS		
NI 5		
	Section 1	
	Section 2	
	Section 3	
	Section 4	
	Section 5	
	Section 5	
	Section 6	
	Section 7	
xib	Section 7	
	Section 8	
	Section 8	
	Section 9	
	Section 10	
	Section 11	

Section 12

SECTION 1 TECH MEMOONE PUBLIC AND STAKEHOLDER INVOLVEMENT STRATEGY

MEMORANDUM #1

	Task 2.1 Public and Stakeholder Involvement Strategy	P14180-008
SUBJECT	Warrenton Transportation System Plan	
FROM:	Ray Delahanty, AICP, DKS Associates Kate Petak, EIT, DKS Associates	
TO:	Warrenton TSP Project Management Team	
DATE:	August 21, 2015	

The City of Warrenton, located in Clatsop County, Oregon, has recognized that citizen involvement is necessary in making wise and legitimate decisions. The following strategy provides specific actions for engaging citizens and stakeholders in the Warrenton Transportation System Plan (TSP) development process.

The City of Warrenton will involve the public and stakeholders primarily through a series of committee meetings, public open houses, and work sessions with elected officials, in addition to the distribution of project information through a variety of media, including a project website. The following describes each of these outreach mechanisms and a milestone schedule showing the public process is attached.

Key transportation planning objectives and issues identified to date include:

- Reflect planning efforts completed since last TSP including area and neighborhood transportation plans such as the Warrenton Urban Renewal District Plan, Warrenton Parks Master Plan, Warrenton Downtown and Marina Master Plans, Warrenton Trails Master Plan, Hammond Marina Master Plan, and Greater Astoria-Warrenton Area Regional Transportation System Refinement Plan
- Address compliance with new and amended federal, state, and local plans, policies, and regulations including the Oregon Transportation Plan (OTP), the Oregon Bike and Pedestrian Plan, the Oregon Rail Freight Plan, the state Transportation Planning Rule (TPR), the Oregon Highway Plan (OHP),

the State Transportation Improvement Program (STIP), Access Management Rules (OAR 734.051), the Clatsop County Transportation System Plan, and the US 101 Condition Report.

Project Advisory Committee

A project advisory committee will inform and guide the plan. The City will not advertise for it, but the PAC meetings will be open for public attendance.

Project Advisory Committee (PAC) - The primary function of the PAC will be to review drafts and provide comments on technical and regulatory memorandums and reports, as well as provide recommendations for the TSP, acting as community representatives. This committee will consist of representatives from affected agencies and service providers and represent a wide array of interests, including: the Oregon Department of Transportation (ODOT), City of Warrenton, Clatsop County, Hammond Port Authority, Warrenton-Hammond School District, emergency service providers, the Warrenton Business Association, and other key community groups and stakeholders. There will be up to 20 PAC members. It is expected that the group will meet four times over the course of the project. The City will coordinate formation of the PAC.

The PAC is currently scoped to meet four times throughout the plan development process, and these meetings will include the following content:

- The first meeting will provide a project orientation and begin the discussion of the goals and objectives that best describe how the transportation system should be developed and managed in Warrenton.
- The second meeting will be a review and discussion of existing and future transportation conditions, as well as the discussion of the process for developing alternatives to meet the existing and future transportation system deficiencies.
- The third meeting will discuss how transportation solutions will be identified, how much funding the county is expected to have, and updated standards to manage the transportation system.

Project Advisory Committee (PAC)				
Name	Affiliation			
Don Snyder	Public Works Director, City of Warrenton			
Skip Urling	Planning Director, City of Warrenton			
Henry Balensifer	Commissioner, City of Warrenton			
Jennifer Bunch	Clatsop County			
Bill Johnston	Planner, ODOT			
Jeff Hazen	Executive Director, Sunset Empire Transit			
Roxanne Williams	Warrenton Business Association			
Keith Pinkstaff	Harbormaster, Hammond Port Authority			
Mark Jeffery	Superintendent, Warrenton-Hammond School District			
Mathew Workman	Police Chief, Warrenton Police Department			
Bob Bridgens	Urban Renewal Committee			
Mike Moore	Hampton Lumber Mill Supervisor			
Chris DeLong	Manager, Costco			
Tessa Scheller	Chair, North Coast Trails Alliance			
Rob Fulton	Representative, Central Business District			
Mike Weston	Port of Astoria			

• The fourth and final meeting will review the Draft TSP and consider public and agency feedback.

Community Events

Two community events will be held during the project. The first community event will introduce the TSP project and obtain input regarding existing and future transportation needs and interests, as well as key areas of interest for inclusion in the goals and objectives. The second community event will obtain input on potential solutions to address transportation needs.

Advertisement of community events will be through a project website, the City's website, a newsletter, and media notices in local newspapers. The City may supplement advertising through the local radio station, and posters/flyers displayed in public areas or at other community events.

City Public Outreach

The City staff will meet with citizens and business owners to discuss the Draft TSP and provide feedback. Materials provided for outreach will include project status summaries, project graphics, or a brief PowerPoint presentation.

Engaging Disadvantaged Populations

Implementation of this Public Involvement Plan meets requirements and guidance found in ODOT Title VI (1964 Civil Rights Act) Plan. Specifically, the Title VI Plan identifies measures to reach and solicit comments from disadvantaged populations within a community. The list of Title VI and Environmental Justice populations includes: race/color/national origin, age, gender, disabilities (mental and physical), limited English proficiency, minority races, and low-income. The community was analyzed by block groups, using data obtained for Clatsop County from the 2009-2013 American Community Survey.¹ The City of Warrenton contains 5 block groups, and data from these block groups were compared to the county and statewide averages. The block group boundaries can be seen in the figure below.

¹ United States Census Bureau. American Fact Finder. 2009-2013 American Community Survey 5-Year Estimates. Accessed August 2015. http://factfinder.census.gov/faces/nav/jsf/pages/download_center.xhtml

City of Warrenton Census Block Group Boundaries

Compared to Clatsop County, one block group in Warrenton contained fewer racial minorities and four block groups contained a greater percentage of racial minorities (>5%). Warrenton equals the County average for percentage of Hispanic/Latino populations in two of the five blocks. Warrenton exceeds the County and State average for households below poverty in the last 12 months in three of the five blocks. Warrenton exceeds the County average for percentage for percentage of population with a disability in two of the five blocks.

According to the 2013 American Community Survey, over 91% of the population of Warrenton is Caucasian and nearly 6% of the population is of Hispanic or Latino origin. In addition, over 22% of individuals in Warrenton were below the poverty line in 2013. The comparison is shown in the table below, with values above county or state averages appearing in bold.

Census Data for Warrenton Block Groups, Clatsop Couty, and Oregon							
	Warrenton North	Warrenton East	Warrenton West	Warrenton SW	Warrenton SE	Clatsop County	Oregon
Total Population	1,389	1,143	2,190	870	913	37,039	3,831,074
Male	708	464	921	446	489	18,407	1,896,002
Female	681	679	1,269	424	424	18,632	1,935,072
Senior Citizen (>65)	16%	16%	8%	20%	19%	17%	14%
White Alone	90%	99%	93%	92%	93%	95%	84%
Black or Aftrican American Alone	2%	0%	0%	0%	0%	1%	2%
American Indian and Alaska Native Alone	0%	0%	1%	0%	1%	1%	1%
Asian Alone	1%	0%	1%	0%	0%	1%	4%
Native Hawaiian and Other Pacific Islander Alone	0%	1%	0%	0%	0%	0%	0%
Some Other Race Alone	7%	0%	0%	6%	1%	3%	5%
Two or More Races	0%	1%	5%	2%	5%	3%	4%
Hispanic or Latino	8%	8%	1%	11%	3%	8%	12%
Limited English Household	1%	0%	0%	4%	0%	6%	6%
Households below Poverty Level in Last 12 Months	18%	30%	11%	19%	12%	13%	16%
Population with Disability	17%	20%	22%	11%	17%	18%	14%

Given the considerable size of the Hispanic or Latino community in Warrenton, written materials and translation service will be made available in Spanish upon request. In addition, the City will post project advertisements in locations where Hispanic or Latino community members are likely to see them.

The City will also post project advertisements in locations where representatives or members of Native American tribes in the region such as the Confederated Tribes of the Grand Ronde, Confederated Tribes of Siletz Indians, Confederated Tribes of Warm Springs, Clatsop-Nehalem Confederated Tribes, and the Chinook Indian Nation are likely to see them.

To assist those that cannot drive, town hall meetings will be at locations accessible via transit, walking or biking when feasible given the meeting location. The county will provide downloadable materials on the project website. Hard copies of project documents will be available upon request for those without internet access.

To help engage senior citizens, the county will post project advertisements in locations where seniors will be likely to see them. Such locations may include drugstores, grocery stores, and retirement and assisted living communities.

Distribution and Review of Work Products

The City will email project work products directly to PAC members, and post them to the project website for access by the general public. PAC members will be able to comment directly through regular committee meetings. The general public will be able to comment during the public comment period at the end of PAC meetings, at town hall meetings, and through the project website. The project website will facilitate public input by including a comment mapping feature. The project team will review comments input through the website and include them as part of the project record of public comments.

SECTION 2 TECH MEMO TWO BACKGROUND DOCUMENT REVIEW

MEMORANDUM #2

	Background Document Review	P14180-008
SUBJECT:	Warrenton Transportation System Plan Update	
FROM:	Ray Delahanty, AICP, DKS Associates Kate Petak, EIT, DKS Associates	
TO:	Warrenton TSP Project Management Team	
DATE:	October 13, 2015	

The purpose of this memorandum is to summarize a review of planning documents, policies, and regulations applicable to the Warrenton Transportation System Plan (TSP) update. The City's current TSP will serve as the foundation for the update process, to which new information obtained from system analysis and stakeholder input will be applied to address changing transportation needs through the year 2040. As new strategies for addressing transportation needs are proposed, compliance and coordination with the plans, policies, and regulations described herein will be required. For the purposes of this memo, the roadway identification is as follows:

- Fort Stevens Highway 104 is used to reference Highway 104, which is also known as S Main Ave in downtown Warrenton
- US 101 Business is used to reference the Warrenton-Astoria Highway that runs between Fort Stevens Highway 104 and the Astoria Regional Airport. US 101 Business is also known as the Warrenton-Astoria Highway and Marlin Avenue
- 105 AA Connect is used to reference E Harbor Street (between US 101 Business and US 101)
- OR-104S (Fort Stevens Spur) is used to reference the Fort Stevens Spur between Fort Stevens Highway 104 and US 101
- 105 AC Connect is used to reference the Fort Stevens Spur located between US 101 and US 101 Business

Summary of Key Background Plan Outcomes

The following table summarizes the key background plan outcomes that were identified in the review of the background documents that follow.

Key Issue(s)

Motor vehicle capacity improvements at US 101/SE Dolphin Avenue, US 101/US101 Business, Old Youngs Bay Bridge, 105 AA Connect/US101 Business, Fort Stevens Highway 104/US 101 Business, and Fort Stevens Highway 104/US 101

Pedestrian and bicyclist safety along and across Highway 101, US 101 Business, Fort Stevens Highway 104, and 105 AA Connect. Construct sidewalks, bike lanes, and crosswalks throughout the City

Improve pedestrian and bicycle access on New Youngs Bay Bridge and Old Youngs Bay Bridge

Develop a truck circulation plan to limit number of trucks traveling through downtown

City/Local Plans, Policies, and Regulations

The following sections summarize local plans, policies, and regulations.

City of Warrenton Comprehensive Plan - 2011

Article 8, Transportation, in the Warrenton Comprehensive Plan includes a summary of the last TSP update process and the objectives and content of the adopted TSP. The 2004 TSP and the 2009 TSP revision were adopted as addenda to the Comprehensive Plan and Article 8 clarifies that, where goals or policies within the Comprehensive Plan contradict or inconsistent with the TSP, the standards of the TSP prevail. Article 8 includes the following transportation goal:

Encourage and help provide a safe, convenient, well-maintained and economic transportation system that recognizes the relationship of the system to other land uses and takes into account the value of various modes of transportation.

Many of the transportation policies in the Comprehensive Plan refer to the standards and recommendations in the adopted TSP. Policies that directly reference the TSP include those related to street classification and design, parking, and financing. Policies under Section 8.350 address multi-modal transportation and, among other things, express specific community objectives related to the Astoria Regional Airport, boating and shipping activities, land development along the Skipanon Channel, pedestrian walkways, and the bicycle system.

The policies in the adopted Comprehensive Plan will inform the development of the TSP update project goals and objectives (Technical Memorandum #4). The Comprehensive Plan transportation policies will be updated to reflect current community objectives, expected transportation conditions, and the standards and recommendations of the updated TSP.

City of Warrenton Transportation System Plan – 2004

The current City of Warrenton Transportation System Plan (TSP) was adopted in 2004. The plan discusses key transportation issues being faced by the city, establishes evaluation criteria to determine a preferred alternative, and identifies additional improvements needed. The plan assumed that the city would grow from its 2002 population of 4,280 residents to 5,741 residents by the year 2020. The goals of the TSP included the following:

- Develop a multimodal transportation system that serves the travel needs of residents, businesses, visitors, and freight transport
- Provide a transportation system that balances transportation system needs with the community's desire to maintain a pleasant, economically viable city.
- Maintain a TSP that is consistent with the goals and objectives of Warrenton, Clatsop County, and the State
- Work to improve cost-effective and safe public transportation through and within Warrenton
- Provide for an interconnected system of pedestrian and bicycle facilities in Warrenton to serve commuters and recreational users
- Provide a transportation system that serves the needs of all members of the community
- Provide a transportation system that balances transportation services with the need to protect the environment and significant natural features
- Work to ensure that development does not preclude the construction of identified future transportation improvements and that development mitigates the transportation impacts it generates when appropriate.
- Provide a transportation system that has sufficient capacity to serve the needs of all users
- Provide reasonable and effective funding mechanisms for City transportation improvements identified in the TSP
- Provide a transportation system that maintains adequate levels of safety for all users

Key Issues

Some of the main issues raised in the previous TSP that are still outstanding or have only partially been addressed are listed below. The current TSP update will determine how to address these outstanding concerns:

- Traffic volume levels were expected to cause operations at nine intersections to not meet mobility standards by 2022: US 101/105 AA Connect, US 101/SE Neptune Ave, US 101/US 101 Business, Fort Stevens Highway 104/US 101 Business, US 101/Fort Stevens Highway 104/Perkins Lane, US 101 Business/105 AA Connect, US 101/OR-104 S (Fort StevensSpur), US 101/SE Dolphin Avenue, 105 AA Connect/SE Neptune Avenue. Several of these are unsignalized intersections that were considered likely to meet traffic signal warrants.
- Motor vehicle safety concerns due high crash rates or skewed geometry in growing areas, such as US 101/US 101 Business, Fort Stevens Highway 104/7th Ave (Hammond), US 101/SE Dolphin Avenue, US 101/OR-104S (Fort Stevens Highway Spur), DeLaura Beach Lane/Ridge Road
- Bicycle and pedestrian safety on the Old Youngs Bay and New Youngs Bay Bridges
- Pedestrian safety and accessibility along and across Highway 101, Fort Stevens Highway 104, US 101 Business, DeLaura Beach Lane, SW 9th Street, and SE Neptune Avenue

Key Standards

- Access spacing guidelines in the Warrenton Development Code require minimum spacing of 25 feet on local streets, and follow ODOT guidelines for arterials and collectors
- Traffic signal spacing follows ODOT guidelines
- The City of Warrenton does not have an adopted mobility standard for intersections under City jurisdiction. The Warrenton Development Code states that facilities shall be managed to maintain adequate performance standards

Recommended Improvements

Improvements were recommended to ensure acceptable future traffic operations through the 2022 planning horizon year. Note that the previous Warrenton TSP included an Astoria-Warrenton Parkway and Astoria Bypass project via Highway 105 and US 101 in Warrenton. The current TSP update will assume that the bypass will not be constructed within the planning horizon year of 2022 and will recommend improvements without the bypass. The current TSP update will, however, determine how to address other outstanding improvements recommended in the prior TSP, shown later in this document under the "Key Projects" section.

Clatsop County Transportation System Plan

The Clatsop County Transportation System Plan (TSP) was adopted in 2003, and is currently being updated. The TSP is the County's long-range plan for developing and managing its transportation system and providing for the transportation needs outside of incorporated city boundaries. The 2003 plan discusses key transportation issues being faced by the county, establishes evaluation criteria to determine a preferred alternative, and identifies additional improvements needed.

The TSP included the following goals:

- Mobility
- Livability
- Coordination
- Pedestrian and Bicycle Facilities

- Environment
- System Preservation
- Capacity
- Transportation Funding

Clatsop County facilities located in the City of Warrenton include the following:

- Ridge Road (between Pacific Drive and US 101)
- Lake Drive
- DeLaura Beach Lane
- Whiskey Road
- Ensign Lane (between US 101 and Business 101)
- SE 19th Street
- SE Airport Lane

Clatsop County uses the ODOT mobility target for district/local interest roads under county jurisdiction. The mobility targets require operation with a v/c of 0.75 or better on rural lands outside of Urban Growth Boundaries, 0.80 or better in unincorporated communities outside of Urban Growth Boundaries, 0.95 or better along streets with posted speeds less than 35 mph inside Urban Growth Boundaries, or 0.90 or better along streets with posted speeds greater than 35 mph inside Urban Growth Boundaries.

When the new Clatsop County Transportation System Plan is adopted, the mobility targets will be updated. The following standards would be evaluated for the highest one-hour period on an average weekday (typically, but not always, the evening peak period between 4 p.m. and 6 p.m. during the spring or fall). For signalized, all-way stop, or roundabout controlled intersections, the intersection should meet Level of Service (LOS) "E" or better and a volume to capacity (v/c) ratio not higher than 0.85. For two-way stop or yield controlled intersections, all movements serving more than 20 vehicles should meet LOS "E" or better and a v/c ratio not higher than 0.90. LOS "F" is acceptable at movements serving no more than 20 vehicles during the peak hour.

Recommended Improvements

The current Warrenton TSP update will determine how to address the recommended Clatsop County improvements, shown later in this document under the "Key Projects" section.

Hammond Marina Master Plan Update - 2005

The Hammond Marina Master Plan update provides a current plan for improvement of the Hammond Marina, located at the northwest corner of the City of Warrenton. It covers land use and proposed a circulation and parking plan surrounding the existing marina, as well as a plan to realign the channel for optimum use of the basin. The original Hammond Marina Master Plan, completed in 1991, also proposed a circulation and parking plan. If the recommended full development of the Hammond Marina Master Plan is completed, Lake Drive to Seafarer's Park would have a 241 stall parking lot located on the east side of the road, and a 30,000 square foot multi-purpose building on the west side of the road with a smaller 105 stall parking lot located on the southwest side of Lake Drive. The current TSP update will determine how to address the recommendations from the plan, shown later in this document under the "Key Projects" list.

Downtown and Marina Master Plans – 2010

The Warrenton Downtown and Marina Master Plans document contains goals developed for downtown Warrenton and the adjacent Warrenton marina, including design guidelines for both districts. The five key ideas for improving the downtown area are to: focus on the natural setting; connect to the waterfront, improve bicycle and pedestrian circulation, create a green downtown, and have the city lead by example. The major elements of the Downtown Master Plan contain proposed streetscape and intersection improvements for key roadways (US 101 Business and Fort Stevens Highway 104), strategies to strengthen the street grid, and zoning code adjustments to encourage redevelopment. The Downtown Plan includes short-, mid-, and long-term action plan items and cost estimates. Parks and open spaces, including a public plaza and improvements to Skipanon Park, are incorporated into the master plan. The Marina Master Plan includes a considerable amount of redevelopment of upland areas associated with the Marina and proposes parking, street, and access improvements. The document acknowledges that a traffic study will likely be required to evaluate traffic generation by the proposed changes in the plan and that ODOT will need to be consulted

Background Document Review

regarding existing and proposed approaches to the highway. The current TSP update will determine how to address the recommendations from the plan, shown later in this document under the "Key Projects" list.

Warrenton Parks Master Plan - 2010

The Warrenton Parks Master Plan includes a long-term vision for the Warrenton Parks System and is intended to guide development of the city parks system from 2011 until 2030. The plan provides an existing inventory, identifies current and future park needs, includes a capital improvement plan, creates a strategy for short and long-term land acquisition, and identifies potential funding techniques and sources. The plan recommends that Skipanon River Park, located downtown, construct parking, access, and circulation improvements and that Tansy Point construct parking improvements and build a trail connection between Tansy Point and Carruthers Park.

Warrenton Trails Master Plan - 2008

The Warrenton Trails Master Plan was developed in order to plan a network of trails that links destinations, natural features, historic landmarks, community facilities, other transportation facilities, neighborhoods, businesses, regional trails, adjacent communities, and state and federal parks. The overall goals of the Warrenton Trails Master Plan are to provide connections for residents to recreate, increase access to the trail system, and encourage trail use around schools.

The plan includes several new trail connections. These include Beaver Trail, which will run along Iredale Street and former logging roads between the Hammond Post Office and 11th Street, bringing trail access to the Warrenton Soccer Fields. Creekside Trail will bridge King Street and 105 AA Connect to 14th, and will connect the Eastern Skipanon River Trail Spur at Fort Stevens Highway 104 along Ensign Lane and across US 101.

Warrenton Urban Renewal District Plan - 2007

The Warrenton Urban Renewal District Plan outlines infrastructure upgrades for the improvement and redevelopment of Warrenton. The main goal of this plan is to improve economic health and appearance of the area by providing for more attractive shopping, dining, living, working, and recreating.

The plan outlines goals for developing the downtown area through bike and pedestrian trails with portals and trailheads, focusing on connectivity. The plan states that during the second phase of the Warrenton Urban Renewal District Plan, \$25,000 is to be used for tourist and bicycle directional signage. For the third phase, it provides \$200,000 for restrooms and \$50,000 for additional trailheads and directional/interpretive signage.

Greater Astoria – Warrenton Area Regional Transportation System Refinement Plan – 2007

The Greater Astoria-Warrenton Area Regional Transportation System Refinement Plan identifies future regional transportation needs in the City of Astoria, the City of Warrenton, and western Clatsop County and recommends a set of improvements to meet those needs over the short (0-10 years), medium (10-20 years), and long term (20+ years). The current TSP update will determine how to address the recommendations from the plan, shown later in this document under the "Key Projects" section.

Sunset Empire Transit District Long Range Transportation Plan

The Sunset Empire Transit District (SETD) is currently developing a long range transportation plan. Several goals include increasing ridership, decreasing headways, adding bus pullouts on US 101, adding bus shelters and kiosks, and improving inter-city connetions to Columbia County, Kelso/Longview, and Portland.

City of Warrenton Development Code

Warrenton's Development Code, Title 16 of the City's Municipal Code, implements the Comprehensive Plan by providing descriptions of land use designations, allowable uses within those districts, and development regulations. In addition to residential, commercial, and industrial districts, the City has water-dependent and aquatic development zones, as well as a number of overlay zones focused on the protection of the Astoria Regional Airport airspace and natural resource areas (floodplain, beaches and dunes, compressible soils, etc.). The Zoning Map shows the location of land use designations and helps direct the type, location, and density of land uses in the city.

The code chapters and sections below are relevant to the development of transportation facilities and system development in Warrenton.

16.12.010 Definitions. The Development Code has defined a number of transportation-related terms, including Level of Service, Pathway/Walkway/Access Way, and Transportation Mode. Transportation Facilities are described as the "physical improvements used to move people and goods from one place to another (e.g., streets, sidewalks, pathways, bike lanes, airports, transit stations and bus stops, etc.)."

16.20.040 Review of Transportation Facilities and Improvements for Compliance with Land Use

Regulations. This section establishes that transportation facilities and improvements meeting one or more of the definitions for transportation facilities and improvements in Chapter 16.12 are permitted outright in most of the City's land use districts.

Chapter 16.120 Access and Circulation includes sections for both vehicular and pedestrian circulation. Vehicular Access and Circulation requires permits for access to public streets and provides options for meeting access spacing requirements. Additional requirements cover shared driveways, connectivity and block formation, vision clearance fire access and circulation, and other topics relating to vehicular access. All developments, except single-family detached housing, duplexes, or triplexes on individual lots, must provide a continuous pedestrian and/or multi-use pathway system, the standards for which are found in Section 16.120.030.

Chapter 16.128 Vehicle and Bicycle Parking includes the City's parking standards. Providing bicycle parking is required for all uses with more than 10 vehicle parking spaces; multi-family uses with four or more dwelling units must provide at least one sheltered bicycle parking space for each dwelling unit.

16.136.020 Transportation Standards includes the City's minimum street rights-of-way and required improvements by street type (see Table 1 below and Table 16.136.010 in the Development Code).

		Cit	y of war	renton s	street Desig	gn Standar	as		
Type of Street	Average Daily Trips (ADT)	Right-of- Way Width	Curb-to- Curb Pavement Width	Motor Vehicle Travel Lanes ⁴	Median/Flex Lane ⁵	Bike Lanes or On-Street Parking (both sides)	Curb	Planting Strip⁵	Sidewalks
				Artei	rial Roads				·
4-Lane Arterial	Varies	80 - 102 ft.	64 - 78 ft.	12 ft.4	14 ft.	8 ft.	Yes	6 ft.	6 ft.
2-Lane Arterial	Varies	80 ft.	40 - 54 ft.	12 ft.4	14 ft.	8 ft.	Yes	6 ft.	6 ft.
				Colle	ctor Roads				
Collector Road	Varies	60 - 64 ft.	36 - 40 ft.	12 ft.4	None	6-8 ft.	Yes	6 ft.	6 ft.
				Loc	al Roads				
Local Road	Varies	50 - 60 ft.	28 - 36 ft.	10-12 ft.	None	8 ft. parking (on one or both sides ¹⁾	Yes (on one or both sides)	5 ft.	5 ft. ³
Alternative Local Road ²	< 250	50 ft.	20 - 28 ft. (no curbs required)	10 ft.	None	None ¹	None	5 ft.	None
Alleys	N/A	12 - 24 ft.	12 - 24 ft.	N/A	N/A	None	None	None	None
Multi-Use Paths	N/A	8 - 16 ft.	8 - 16 ft.	N/A	N/A	None	None	None	None

Table I

of Manuantan Stu ot Docign Standards

1 Bike lanes are generally not needed on low volume (less than 3,000 ADT) and/or low travel speed (less than 35 mph) roads. 2

The alternative local road standard may be used when approved by the City of Warrenton. The standard is intended to apply under the following circumstances:

The local road will serve 18 or fewer dwelling units upon buildout of adjacent property.

The ADT volume of the road is less than 250 vehicles per day.

Significant topographical or environmental constraints are present.

Use of the alternative local road standard will not create gaps in connectivity or roadway standards with adjacent roadway sections (i.e. . sidewalk, parking, travel lane widths).

• The City-appointed engineer and Emergency Service Providers have reviewed and accepted usage of the alternative local roadway standard.

3 Sidewalks are required on all local roads in high-density residential and commercial zones unless exempted by the City-appointed engineer or Planning Commission.

4 Where parking is constructed next to a travel lane, the travel lane shall be increased to a width of 14 feet to function as a shared roadway and accommodate bicycles.

⁵ Footnote indicates that these features are optional. Flex lanes would provide for traffic flow in one direction or another depending upon the specific traffic patterns and demands for an area. Flex lanes could be used for transit routes or emergencies, and would provide extra right-of-way width for future rail or transit. Appropriate safety measures would need to be installed in conjunction with flex lanes.

This code section also refers to TSP Figures 5-3, 5-4, and 5-5 for local, collector and arterial roads cross sections. Requirements include submitting a street plan for future extensions as part of a subdivision application, local street spacing, and limitations on cul-de-sacs and dead-end streets.

As part of the TSP update the street functional classifications and cross-section standards will be reviewed and potentially revised to ensure that they meet community needs. Where modifications are proposed, the Development Code standards will need to be updated for consistency with the updated TSP. In addition, the Development Code contains a number of other transportation-related development requirements (e.g., Traffic Impact Study (TIS) requirements in Chapter 16.256). Amendments to the City's development requirements may be needed in order to implement the recommendations of the updated TSP and to better comply with the State's Transportation Planning Rule (see Technical Memorandum #3, Regulatory Review).

City of Warrenton Capital Improvement Plan

The City of Warrenton has a Capital Improvement Plan (CIP) that outlines specific projects that will be funded through 2021.

2015-16 Fiscal Year Projects:

- DeLaura Beach: \$120,000 to build a multi-use trail along SW DeLaura Beach between Ridge Road and Fort Stevens State Park
- Hammond Post Office: \$100,000 to install sidewalk and crosswalk improvements by the Hammond Post Office
- NW Cedar Court Improvement Project: \$137,000 to rebuild NW Cedar Court south of Warrenton Drive and upgrade water and sewer mains
- Chokeberry Avenue: \$90,000 to improve access right-of-way between SE 19th Street and Food Bank
- NW 13th Street and Warrenton Drive Trail Improvements: \$141,000 to provide a multi-use trail along NW 13th Street between Warrenton Drive and the Riverfront Trail
- SW 3rd Street Improvement Project: \$87,000 to improve roadway and drainage on SW 3rd Street between SW Main Ct and Fort Stevens Highway 104
- N Main/NW 7th Place Improvements: \$391,600 to upgrade the water system and repair and rebuild N Main St and NE 7th St
- **\$550,650 in unallocated SDC revenue funded improvements**

2016-17

- 105 AA Connect (East Harbor Street) sidewalks: \$100,000 to install sidewalk improvements along ODOT rights of way, including 105 AA Connect (East Harbor Drive) to connect downtown Warrenton to US 101
- SE 2nd Street: \$325,000 to rebuild SE 2nd Street east of US 101 Business to the old CostCo site
- SW 4th Street: \$118,000 to improve SW 4th Street between Fort Stevens Highway 104 and SW Alder Court
- NE Skipanon Improvement Project: \$143,000 to improve NE Skipanon Drive north of Fort Stevens Highway 104
- 4th Avenue Improvement Project: \$195,000 to rebuild Fourth Avenue between Lake and Jetty
- SW 2nd Street: \$48,000 to construct new roadway for SW 2nd Street between Elm and Gardenia

Background Document Review

2017-18

- Quick Fix Funds: \$100,000 to install sidewalk improvements along ODOT rights of way
- SW 2nd St: \$267,000 to construct new roadway for SW 2nd Street between Elm and Gardenia
- SE Anchor Storm Improvements: \$354,000 to install new storm drain on SE Anchor south of 1st St, waterlines on Anchor Ave/3rd Street, and rebuild roadway
- SW Alder Ave Reconstruction Project: \$185,000 to rebuild SW Alder Ave with curbs from 1st St to 2nd St and grind and overlay from 2nd St to 3rd St

2018-19

- Quick Fix Funds: \$100,000 to install sidewalk improvements along ODOT rights of way
- SE Main Court Reconstruction Project: \$107,000 to rebuild SE Main Court between SE 9th St and SE 11th St

2019-20

- Quick Fix Funds: \$100,000 to install sidewalk improvements along ODOT rights of way
- SE 2nd St Improvement Project: \$281,000 to rebuild SE 2nd St between Fort Stevens Highway 104 and SE Anchor
- Fort Stevens Highway 104 and SW 14th Place sidewalks: \$24,000 to provide sidewalks onFort Stevens Highway 104 and SW 14th Place

2020-21

Quick Fix Funds: \$100,000 to install sidewalk improvements along ODOT rights of way

City transportation projects constructed since 2004

Major transportation projects constructed in the City since 2004 include the following:

- Ensign Lane Improvements. This project included installing a traffic signal at US 101/SE Ensign Lane and constructing a new roadway between OR-104S (Fort Stevens Spur) and US 101 Business
- US 101 Business Improvements: This project included realigning the US 101/US 101 Business intersection and installing a traffic signal
- New Neighborhood Construction: Roads were built for new residential construction: Salal Loop, SE Willow Drive, SE Azalea Ave, SE Huckleberry Ave, and the SW Juniper Ave/SW Gardenia Ave area

Transportation Funding

	Funding Sources (Past 5 Years)						
	2011-12 2012-13 2013-14 2014-15 2015-16						
State Tax Street Funds	\$1,499,595	\$1,510,465	\$1,719,455	\$2,013,543	\$1,741,391		
Streets SDC Fund	N/A	\$126,985	\$167,559	\$71,698	\$550 , 650		

The City of Warrenton currently has the following transportation funding mechanisms:

The State Tax Street Funds are provided by the Oregon Department of Transportation, the State Highway Trust Fund, and the City 0.03 cent fuel tax. One percent of all gas tax receipts are set aside for bicycle lanes and pedestrian paths. The City fuel tax will net approximately \$288,000 in fiscal year 2015-16. The City fuel tax is used to pay for rebuilding and overlaying city streets, with the remaining balance going towards street maintenance, street repair, and street lighting.

The Streets SDC Fund may be used for transportation improvements "including but not limited to streets, sidewalks, bike paths, street lights, trees, mass public transportation, vehicle parking, and bridges."¹ The proposed expenditures for 2015-16 include the following:

- Personnel Services \$75,643
- Materials and Services \$374,033
- Capital Outlay \$1,488,976
- Contingency \$89,535

The total expected funding for 2015-16 is \$2,292,041 and the total expected expenditures are \$2,026,187, leaving an expected balance of \$265,854.

¹ City of Warrenton. Draft Report for System Development Charges. Prepared by FCS Group. December, 2011. Background Document Review

State Plans, Policies, and Regulations

The following sections summarize state plans, policies, and regulations.

Oregon Transportation System Plan Guidelines

ODOT's Transportation System Plan Guidelines is comprised of four chapters: an overview of transportation system planning (Chapter 1); guidance for the preparation of a jurisdiction's first TSP and of TSP updates (Chapters 2 and 3); and policy guidance on transportation and land use issues in a series of technical appendices (Chapter 4). The 2008 Guidelines differ from the 2001 Guidelines in that they focus more on TSP updates, make stronger connections between local transportation needs and the availability of transportation funding, and provide more guidance related to mobility standards, the OTP, and project financing in the technical appendices, in addition to new electronic links throughout the document for easy access to additional resources.

The chapter on TSP updates is divided into three steps: determining if an update is needed and scoping the update project; preparing an assessment; and addressing recent regulatory and policy changes, the latter two of which are most applicable to the Warrenton TSP update.

The TSP Guidelines direct TSP updates to address recent policy and regulatory changes, and calls out recent changes to the Oregon Transportation Plan (OTP), The Oregon Highway Plan (OHP), and the Transportation Planning Rule (TPR). Since adoption of the 2004 Warrenton TSP, the OTP was updated (2006) to emphasize maintaining assets in place, optimizing existing system performance through technology and better system integration, creating sustainable funding, and investing in strategic capacity enhancements. Policy 1F (Mobility Standards) of the OHP was amended to allow for the adoption of alternative mobility standards where "practical difficulties make conformance with the highway mobility standards infeasible," as was Appendix C (Access Management Spacing Standards) to be consistent with amendments to the Access Management Rule, OAR 734-051. Amendments to the TPR are described in the section of this memorandum that reviews the TPR.

Oregon Transportation Plan

An update of the Oregon Transportation Plan (OTP) was adopted by the Oregon Transportation Commission (OTC) in 2006. The OTP is a comprehensive plan that addresses the future transportation needs of the State of Oregon through the year 2030. It considers all modes of transportation, including airports, bicycle and pedestrian facilities, highways and roadways, pipelines, ports and waterway facilities, public transportation, and railroads.

The following seven goals with associated policies and strategies are provided in the plan to address the core challenges and opportunities facing transportation in Oregon:

- Goal 1 Mobility and Accessibility
- Goal 2 Management of the System
- Goal 3 Economic Vitality
- Goal 4 Sustainability

- Goal 5 Safety and Security
- Goal 6 Funding the Transportation System
- Goal 7 Coordination, Communication and Cooperation.

There are also six key initiatives identified to reflect the desired direction of the plan and to frame the plan implementation. These initiatives are:

1. Maintain the existing transportation system to maximize the value of the assets. If funds are not available to maintain the system, develop a triage method for investing available funds.

- 2. Optimize system capacity and safety through information technology and other methods.
- 3. Integrate transportation, land use, economic development and the environment.
- 4. Integrate the transportation system across jurisdictions, ownerships and modes.
- 5. Create a sustainable funding plan for Oregon transportation.
- 6. Invest strategically in capacity enhancements.

The TSP update will be developed to be consistent with the goals and policies of the OTP. It will emphasize, as the updated OTP has, maintaining and building upon existing investments and using system management, technology, and transportation options to maximize the existing state highway system in the city.

Oregon Highway Plan

The Oregon Highway Plan (OHP) was originally adopted in 1999 and was reaffirmed as a modal element of the 2006 Oregon Transportation Plan (OTP). The OHP defines policies and investment strategies for Oregon's state highway system. The plan contains three elements: <u>a vision element</u> that describes the broad goal for how the highway system should look in 20 years; <u>a policy element</u> that contains goals, policies, and actions to be followed by state, regional, and local jurisdictions; and <u>a system element</u> that includes an analysis of needs, revenues, and performance measures.

The OHP addresses the following issues:

- Efficient management of the system to
- increase safety, preserve the system, and extend its capacity
- Increased partnerships, particularly with regional and local governments
- Links between land use and transportation
- Access management
- Links with other transportation modes
- Environmental and scenic resources

The policy element contains several policies and actions that are particularly relevant to the Warrenton TSP, described in the following subsections.

Policy IA (State Highway Classification System)

Action 1A.1 categorizes state highways for planning and management decisions. US 101 (No. 9) in Warrenton is classified as a Statewide Highway, part of the National Highway System (NHS), a Truck Route, and a Scenic Byway. US 101 Business (No. 105), Fort Stevens Highway 104, and OR-104S (Fort Stevens Spur) are classified as District Highways with no other designations.

According to OHP policy, statewide highways are intended to provide inter-urban and inter-regional mobility and connections to larger urban areas, ports and major recreational areas not directly served by Interstate highways. District highways are intended to provide connections between small urbanized areas, rural centers, and also serve

local access. Updates to the TSP will support the existing highway classifications and will enhance the ability of the highways in Warrenton to serve in their defined functions.

Policy IB (Land Use and Transportation)

Policy 1B, recognizes the need for coordination between state and local jurisdictions. Action 1B.7 gives special highway segment designations for specific types of land use patterns to foster compact development. The three segment designations available are Special Transportation Area, Commercial Center, and Urban Business Area.

Policy IC (State Highway Freight System)

Policy 1C addresses the need to balance the movement of goods and services with other uses. In addition, Action 1C.4 states that the timeliness of freight movements should be considered when developing and implementing plans and projects on freight routes. There are currently no freight routes through Warrenton.

Policy IF (Highway Mobility Standards)

Policy 1F sets mobility standards for ensuring a reliable and acceptable level of mobility on the highway system. Pursuant to Policy 1F, Table 6:

• Statewide highways inside Urban Growth Boundaries (UGBs) in non-MPO areas that are freight routes but do not have special OHP land use designations (US 101 in Warrenton) have a mobility standard requiring that the highway operate at or below a volume to capacity (v/c) ratio of 0.80

Statewide highways inside UGBs in non-MPO areas that are not freight routes or do not have special OHP land use designations have a mobility standard requiring that the highway operate at or below a volume to capacity (v/c) ratio of 0.80-0.90 depending on the posted speed

District highways inside UGBs in non-MPO areas that are not freight routes or do not have special OHP land use designations (US 101 Business, Fort Stevens Highway 104, OR-104S (Fort Stevens Spur) in Warrenton) have a mobility standard requiring that the highway operate at or below a volume to capacity (v/c) ratio of 0.85-0.90 depending on the posted speed

Unsignalized side street approaches to state highways are required to meet the district highway standards

Policy IG (Major Improvements)

Policy 1G requires maintaining performance and improving safety by improving efficiency and management before adding capacity. The intent of policy 1G and Action 1G.2 is to ensure that major improvement projects to state highway facilities have been through a planning process that involves coordination between state, regional, and local stakeholders and the public, and that there is substantial support for the proposed improvement.

Policy 2B (Off-System Improvements)

Policy 2B establishes ODOT's interest in improvements on local roads that maintain or improve safety and mobility performance on state roadways, and supports local jurisdictions in adopting land use and access management policies. The TSP will include sections describing existing and future land use patterns, access management, and implementation measures.

Policy 2D (Public Involvement)

Public involvement in transportation planning and project development will be a critical part of the TSP process.

Policy 2F (Traffic Safety)

Policy 2F identifies the need for projects in the state to improve safety for all users of the state highway system through engineering, education, enforcement, and emergency services. One component of the TSP is to identify existing crash patterns and rates and to develop strategies to address safety issues. Proposed improvements will aim to reduce the vehicle crash potential and/or improve bicycle and pedestrian safety by providing upgraded facilities that meet current standards.

Policy 3A (Classification and Spacing Standards)

Policy 3A sets access spacing standards for driveways and approaches to the state highway system. The TSP will address local access management policies and standards for inclusion in the Warrenton Development Code and will identify recommended traffic signal spacing guidelines.

Policy 4B, Action 4B.4 (Alternative Passenger Modes)

Action 4B.4 requires that highway projects encourage the use of alternative passenger modes to reduce local trips. The TSP will develop ways to support and increase the use of alternative passenger modes to reduce trips on highways and other facilities. This will include improvement to bicycle and pedestrian facilities and consideration of transit movement along roadways.

Oregon Bicycle and Pedestrian Plan

The provision of safe and accessible bicycling and walking facilities in an effort to encourage increased levels of bicycling and walking is the goal of the Oregon Bicycle and Pedestrian Plan, which is an element of the Oregon Transportation Plan (OTP). The plan identifies actions that will assist local jurisdictions in understanding the principles and policies that ODOT follows in providing bikeways and walkways along state highways. In order to achieve the plan's objectives, the strategies for system design are outlined, including:

- Providing bikeway and walkway systems and integrating with other transportation systems
- Providing a safe and accessible biking and walking environment
- Developing educational programs that improve bicycle and pedestrian safety

The plan is currently comprised of two parts: the Policy and Action Plan and the Oregon Bicycle and Pedestrian Design Guide. The Policy and Action section contains background information, legal mandates and current conditions, goals, actions and implementation strategies ODOT proposes to improve bicycle and pedestrian transportation. Originally adopted in 1995 and reaffirmed as an element of the OTP in 2006, this section is currently being updated as the "Bicycle and Pedestrian Mode Plan." The Design Guide is the technical element of the plan that guides the design and management of bicycle and pedestrian facilities on state-owned facilities. It has been designated as a companion piece to the Highway Design Manual and includes updated and innovative pedestrian and bicycle treatments. The Design Guide was updated in 2011 and will remain separate from the policy portion of the plan .

Oregon Public Transportation Plan

The Oregon Public Transportation Plan (OPTP) constitutes the transit modal plan of the Oregon Transportation Plan. The plan contains goals, policies, and strategies relating to the statewide public transportation system. The plan is intended to provide guidance for ODOT and public transportation agencies regarding the development of public transportation systems. The vision guiding the Public Transportation Plan is as follows:

• A comprehensive, interconnected and dependable public transportation system, with stable funding, that provides access and mobility in and between communities of Oregon in a convenient, reliable, and safe manner that encourages people to ride

• A public transportation system that provides appropriate service in each area of the state, including service in urban areas that is an attractive alternative to the single-occupant vehicle, and high-quality, dependable service in suburban, rural, and frontier (remote) areas

A system that enables those who do not drive to meet their daily needs

• A public transportation system that plays a critical role in improving the livability and economic prosperity for Oregonians.

The OPTP Implementation Plan directs ODOT investments towards commuter and mobility needs in larger communities and urban areas and also in smaller communities where warranted. It also directs investments towards intercity connections statewide. Long-term implementation and funding will support both modernization and preservation projects while, in the short term, funding will likely be available for preservation projects.

An assessment of existing transit conditions in Warrenton and, potentially, proposed improvements will be included in the TSP update process, and will be guided by the vision and implementation plan set forth in the Oregon Public Transportation Plan.

Oregon Rail Plan

The Oregon Rail Plan, another modal plan within the OTP, addresses long-term freight and passenger rail planning in Oregon. The plan includes a freight element and passenger element that describes infrastructure and service conditions historically and at the time the plan was prepared. In terms of freight rail, a branch line once provided freight rail service from Astoria to Seaside; however, this line has been abandoned. In terms of passenger rail, Amtrak does not provide service to Warrenton, but there is established intercity bus service between Warrenton and other cities in Northwest Oregon.

The Oregon Rail Plan also includes a chapter on rail policies and planning. General policy is set for passenger rail: "This system shall consist of an efficient operation, reliable service, access to all potential users, and compliance with state environmental and land use standards. Convenient connections with other modes should integrate passenger train service into a network linking all areas of the state, nation, and the world." Policies for freight rail include the following

- Increase economic opportunities for the State by having a viable and competitive rail system.
- Strengthen the retention of local rail service where feasible.
- Protect abandoned rights-of-way for alternative or future use.

Integrate rail freight considerations into the State's land use planning process.

Since there are already several rails-to-trails in Warrenton with plans for expansion, the policy regarding protecting abandoned rights-of-way for alternative use will be important in updating the Warrenton TSP.

Transportation Planning Rule (OAR 660.012)

The Transportation Planning Rule (TPR) implements Oregon Statewide Planning Goal 12, which supports transportation facilities and systems that are safe, efficient, and cost-effective and are designed to reduce reliance on single-occupancy vehicles. The objective of the TPR is to reduce air pollution, congestion, and other livability problems, and to maximize investments made in the transportation system. The following subsections of the TPR are relevant to the Warrenton TSP update.

660-012-0020 - Elements of Transportation System Plans

Section 0020 of the TPR specifies what is required in a TSP, including an inventory and assessment of existing conditions; forecasts of transportation needs; a road system plan; a public transportation plan; a bicycle and pedestrian plan; air, rail, water, and pipeline plans as applicable; transportation system and demand management plans; a financing program; and implementing policies and land use regulations.

660-012-0035 - Evaluation and Selection of Transportation System Alternatives

Section 0035 describes standards and alternatives available to agencies evaluating and selecting transportation projects, including benefits to different modes, land use alternatives, and environmental and economic impacts.

660-012-0045 – Implementation of the Transportation System Plan

The TPR requires local governments to adopt land use regulations consistent with state and federal requirements "to protect transportation facilities, corridors and sites for their identified functions." This is achieved through a variety of measures, including locally adopting access control measures, standards to protect future operations of roads, expanded notice requirements and coordinated review procedures for land use applications, processes to apply conditions of approval to development proposals, and regulations ensuring that amendments to land use designations, densities, and design standards are consistent with the functions, capacities, and performance standards of facilities identified in the TSP.

660-012-0050 - Transportation Project Development

Section 0050 requires that transportation projects be reviewed for compliance with local and regional plans and, when applicable, undergo a NEPA environmental review process. Amendments to Section 0050 made since adoption of the 2004 Warrenton TSP protect determinations of need, mode, function and general location for projects identified in TSPs.

660-012-0060 - Plan and Land Use Regulation Amendments

Amendments made to Section 0060 in 2005 are among the most significant changes that have been made to the TPR since adoption of the City's TSP in 2004. The amendments require local jurisdictions to balance the need for development with the need for transportation improvements, establish the end of the planning period as the measure

for determining "significant effect", define the transportation improvements that a local government can consider in determining significant effect, and identify methods for local jurisdictions in determining whether a needed transportation facility is reasonably likely to be provided within the planning horizon.

US 101 Condition Report – 2005

The US 101 Conditions Report provides physical and traffic operational information about the US 101 corridor, including the portion through Warrenton, in graphical format. It covers material such as land use, traffic operations, facility inventory, safety, approach inventory, and geometrics data of the highway by mile-point. The report also provides a video log by mile-point for the north and southbound directions of the highway. The data from this plan will be considered in compiling existing conditions information for this TSP update.

State Transportation Improvement Program

There is currently one project in Warrenton on 2015-2018 Oregon State Transportation Improvement Program funding list. The US 101: New Youngs Bay Bridge Repair project consists of applying a deck overlay and cathodic protection, which will cost approximately \$12.5 million and is scheduled for construction in 2018.

Key Projects

The following sections summarize key projects recommended from the prior plans and studies.

City of Warrenton Transportation System Plan

Motor Vehicle Improvements

- Intersection improvements at US 101, Fort Stevens Highway 104, and Perkins Lane (Cost: \$10,000)
- 105 AA Connect/SE Neptune Ave Signalize intersection (Cost: \$300,000)
- Fort Stevens Highway 104 and US 101 Business Signalize intersection, reconfigure geometry, and improve pedestrian crossings (Cost:\$1,000,000)
- Delaura Beach Lane Upgrade roadway width with shoulders (Cost: \$775,000)
- Realign US 101 Business and SE 12th Place/Airport (Cost: \$500,000)
- DeLaura Beach Lane/Ridge Road Improve intersection geometry (Cost: \$500,000)
- Extend SW 2nd St to connect with SW Juniper Ave (Cost: \$685,000)
- Construct curb, sidewalk, and new local roadway along SE 7th St from Fort Stevens Highway 104 to US 101 Business (Cost: \$3,530,000)
- Connect Juniper Ave with Ridge Road (Cost: \$550,000)
- Fort Stevens Highway 104 and SE 5th Street Improve intersection geometry (Cost: \$200,000)
- Realign US 101/Fort Stevens Highway 104 (Cost: \$1,000,000)
- Improve intersection geometry at US 101/SE Dolphin Ave (Cost: \$400,000)
- Improve intersection geometry at Fort Stevens Highway 104 and 7th Ave (Cost: \$250,000)
- Add turn lanes at 105 AA Connect/US 101 Business and signalize intersection (Cost: \$550,000)
- Add turn lanes to US 101 Business at US 101 (Cost: \$300,000)

Pedestrian and Bicycle Improvements

■ 105 AA Connect from US 101 to Marlin Dr – add bike lanes and sidewalks (Cost: \$490,000)

- Connect Hammond to Fort Stevens State Park with bike path (Cost: \$205,000)
- Stripe 6' bike lanes on both sides of Hwy 104 Spur (Cost: \$25,000)
- US 101 Business Construct sidewalk and bike lane on both sides of US 101 Business (Cost: \$460,000)
- SW 9th St Upgrade width, add bike lanes and sidewalks (Cost: \$1,700,000)
- Construct sidewalks on NW Warrenton Drive from NW 14th St to NW 1st St (cost not estimated)
- Construct sidewlks on east side of Ridge Road from SW 9th St to soccer fields (cost not estimated)
- SE Neptune Ave from 105 AA Connect to US 101 add curb and sidewalk on both sides (Cost: \$670,000)
- SE Neptune Drive add sidewalks and bike lanes on both sides (Cost: \$280,000)
- Fort Stevens Highway 104 Install curb and sidewalks both sides from MP 0.1 to 1.17, 3.28 to 3.4, and 4.73 to 4.82 (Cost: \$1,400,000)
- US 101 Business Install curb and sidewalks on both sides from MP 0 to 0.87 (Cost: \$950,000)
- Construct curb and sidewalks on both sides of OR-104S (Fort Stevens Spur) (Cost: \$920,000)
- Pave top of dike from Fort Stevens Highway 104/US 101 Business to Hammond (Cost: \$325,000)

Transit, Sea, and Air Improvements

- Install shelters and kiosks on US 101 north and south of the New Youngs Bay Bridge (Cost: \$20,000)
- ADA compliance at transit stops
- Improve service between Cannon Beach and Astoria and Astoria and Warrenton
- Provide covered shelters, signage, bus pullouts
- Improve efficiency of dial-a-ride

Clatsop County Transportation System Plan

Recommended Improvements

The current Warrenton TSP update will determine how to address the recommended Clatsop County improvements listed below:

- Warrenton-Miles Crossing Off-Highway Shared Use Path Study (Cost: \$150,000)
- US 101 New Youngs Bay Bridge pedestrian and bicycle improvements (Cost: \$1,000,000)
- US 101/Fort Steven Highway 104 install advance warning signing on US 101 (Cost: \$75,000)
- US 101/Fort Steven Highway 104 add eastbound right turn lane (Cost: \$450,000)
- Add bicycle route designation signage on Hwy 105 (Cost: \$10,000)
- Add shoulders to DeLaura Beach Lane (Cost: \$775,000)
- Intersection improvements at US 101, Fort Stevens Hwy 104, and Perkins Lane (Cost: \$10,000)
- Install shelters and kiosks on US 101 north and south of the New Youngs Bay Bridge (Cost: \$20,000)
- Add parking at Warrenton Mooring Basin

Greater Astoria – Warrenton Area Regional Transportation System Refinement Plan

Recommended Improvements

The current Warrenton TSP update will determine how to address the recommended improvements listed below:

- Install traffic signal at Fort Stevens Highway 104/US 101 Business and Fort Stevens Highway 104/Skipanon Drive and add turn pockets
- 105 AA Connect/Neptune modify intersection to be right-in/right-out by installing a raised island
- Install traffic signal or roundabout at 105 AA Connect/US 101 Business
- US 101 Business between 105 AA Connect and US 101 add shoulders, bike lanes, and sidewalks
- Eliminate southbound left turns at US 101/OR-104S (Fort Stevens Spur)
- Modify US 101/Perkins Road intersection to improve mobility and safety
- Construct new roadway in North Coast Business Park area
- Realign Dolphin Road to connect with the new US 101 Bus alignment and eliminate Dolphin Rd/US 101 intersection
- Replace the New Youngs Bay Bridge with a new 4 lane facility with bike and pedestrian facilities

Hammond Marina Master Plan Update - 2005

Recommended Improvements

The current Warrenton TSP update will determine how to address the recommended improvements listed below:

- Construct parking lot to accommodate 160 cars and up to 200 cars in the future
- Install planted barrier between through lane and stacking lane for boat trailers on Lake Drive
- Install signage in Warrenton directing users to the site

Warrenton Downtown and Marina Master Plans - 2010

Recommended Improvements

The current Warrenton TSP update will determine how to address the recommended improvements listed below:

- Improve Harbor Drive add street trees, lighting, sidewalks, crosswalks, and bike lanes.
- Improve pedestrian facilities on Skipanon River Bridge
- Harbor Drive/S Main Ave Improvements consider installing wider sidewalks, street trees, new lighting, new crosswalks, and curb extensions when improving this intersection
- Install wider sidewalks on S Main Ave, narrow the travel lanes and parking stalls. Consider adding curb extensions at crosswalks and street trees
- Strengthen street grid by extending existing streets to areas of future redevelopment
- Expand and enhance Skipanon Trail
- Plan truck routing to discourage trucks from driving through downtown

SECTION 3 TECH MEMO THREE REGULATORY REVIEW

DRAFT TECHNICAL MEMORANDUM #3

DATE:	October 14, 2015
TO:	Warrenton TSP Project Management Team
FROM:	Darci Rudzinski, Angelo Planning Group Shayna Rehberg, Angelo Planning Group
SUBJECT	: Warrenton Transportation System Plan
	Task 3.3, Technical Memorandum #3, Regulatory Review – PAC REVIEW DRAFT

Pursuant to Task 3.3, the purpose of this memorandum is to discuss and identify City of Warrenton Comprehensive Plan and Development Code provisions that may need to be updated in order to be reflect and implement the updated TSP and to be consistent and comply with the Oregon Transportation Plan (OTP) and the Transportation Planning Rule (TPR). Information provided in this memorandum includes an overview of the relationship between the TSP update and these regulatory documents as well as a detailed TPR compliance audit (Table 1). Upon City review of the findings and recommendations in this memorandum, additional recommended changes to the Development Code may be identified.

Draft Updated Transportation System Plan (TSP)

Policy and code amendments may be needed in order to ensure that the Warrenton Comprehensive Plan and Development Code are consistent with the updated TSP. Proposed amendments will be presented as part of the implementation phase of this project. Updated policy language will likely emphasize issues that have received enhanced state and local attention since the TSP was adopted in 2004, such as strategies to optimize the management and efficiency of the existing transportation system and the role that the transportation system plays in human health.

Policy amendments will also reflect community priorities identified through the TSP update process, including Technical Memorandum #4, which involves the project team's review of existing transportation goals and policies in the TSP and Comprehensive Plan. As discussed in Technical Memorandum #2, both the City's TSP and Comprehensive Plan (Article 8 Transportation) contain transportation policies, with the standards in the TSP prevailing where conflicts between adopted policies exist. Adopted policies address the transportation system in general, as well as parking, street classification and design, multi-modal transportation, and issues particular to the Astoria Regional Airport and boating and shipping activities. Technical Memorandum #4 will assess these policies for current relevance as well as use these policies as a basis for project goals and evaluation criteria.

Article 8 of the Comprehensive Plan will need to be amended to implement the TSP recommendations and reflect updated policy direction.

It is expected that Development Code amendments also will be necessary to fully implement the recommendations of the updated TSP. Examples include modifying street standards and other design standards related to transportation facilities. These policy and code changes will be identified and developed as part of the TSP update process.

Oregon Transportation Plan (OTP)

The OTP is the State's comprehensive transportation plan. The planning horizon of the current plan extends through 2030. Its purpose is to establish goals, policies, strategies, and initiatives for long-range transportation planning in the state.

The OTP emphasizes maximizing the investment in the existing transportation system, integrating transportation and land use regulations, and integrating the transportation system across jurisdictions and modes. The following are key initiatives in the OTP:

- Maintain the existing transportation system to maximize the value of the assets. If funds are not available to maintain the system, develop a triage method for investing available funds.
- Optimize system capacity and safety through information technology and other methods.
- Integrate transportation, land use, economic development and the environment.
- Integrate the transportation system across jurisdictions, ownerships and modes.
- Create a sustainable funding plan for Oregon transportation.
- Invest strategically in capacity enhancements.

Consistent with these key initiatives, as well as related OTP's goals, the TSP update will:

- Promote the most cost-effective modes and solutions over the long term that are easy to use, reliable, and accessible to all potential users, including the transportation disadvantaged.
- Prioritize transportation demand management and transportation system operations techniques that aim to fine tune existing systems and policies instead of implementing costly major roadway capacity improvements.
- Develop projects that ensure the transportation system maintains and improves individual safety and security and maximizes public safety and service access.
- Identify projects that support a prosperous and competitive economy by preserving and enhancing business opportunities, and ensuring the efficient movement of people and goods to recreational, employment, housing and other destinations.
- Identify solutions that support the movement of people over vehicles, and that reduce transportation barriers to daily activities for people walking, bicycling, and using public transportation. The solutions will be environmentally responsible and be sensitive to the physical setting and context of the surrounding land use.

- Provide public involvement opportunities to all stakeholders and residents, and will coordinate with other jurisdictions and agencies to ensure the planned transportation system limits minimizes barriers and functions as one integrated system.
- Include an assessment of the level of transportation funding projected to be available through the 20year planning horizon in comparison to the cost of developing a transportation system that is able to meet the City's needs. Opportunities to establish stable funding sources will be discussed and project prioritization will consider the feasibility of funding.

OTP policy and investment strategies are translated into plans for specific transportation modes in order to implement statewide multimodal priorities. The Oregon Highway Plan, the Oregon Bicycle and Pedestrian Plan, the Oregon Public Transportation Plan, and the Oregon Rail Plan are modal plans that have been reviewed for this project to ensure that the updated TSP will be consistent with policies, strategies, and design guidelines in these modal plans. (See Technical Memorandum #2 for a summary of the OTP and State modal plans and their relevancy to Warrenton's TSP update.)

Transportation Planning Rule (TPR)

The Transportation Planning Rule (TPR) (OAR 660-012) implements Statewide Planning Goal 12 (Transportation), which is intended to promote the development of safe, convenient, and economic transportation systems that are designed to maximize the benefit of investment and reduce reliance on the automobile. The TPR includes direction for preparing, coordinating, and implementing TSPs. In particular, TPR Section -0045 (Implementation of the Transportation System Plan) requires local governments to amend their land use regulations to implement the TSP. It also requires local governments to adopt land use and subdivision regulations to protect transportation facilities for their identified functions.

TPR Section -0060 (Plan and Land Use Regulation Amendments) addresses amendments to plans and land use regulations. It specifies measures to be taken to ensure that allowed land uses are consistent with the identified function and capacity of existing and planned transportation facilities. Local code requirements that address this TPR provision include: access control measures; standards to protect future operations of roads; expanded notice requirements and coordinated review procedures for land use applications; procedures that specify needed transportation improvements as a possible condition of approval; and regulations ensuring that amendments to land use designations, densities, and design standards are consistent with the functions, capacities, and performance standards of facilities identified in the TSP. Section -0060 also establishes criteria for identifying the significant effects of plan or land use regulation amendments on transportation facilities, actions to be taken when a significant effect would occur, identification of planned facilities, and coordination with transportation facility providers. Table 1 provides an evaluation of the City of Warrenton's Development Code (Title 16 of the Warrenton Municipal Code) based on Sections -0045 and -0060 of the TPR.¹ The evaluation includes findings confirming whether existing code language complies with the TPR. Where necessary, Table 1 provides recommendations for amending the code to better address TPR requirements.

¹ Note that the focus of the TPR evaluation is on how the City implements the local transportation plan through land use and development requirements. As such, Table 2 does not include an evaluation of existing policy language. However, as stated earlier in this memorandum, a review and update of policy language will be conducted later in the TSP update process.
N / 1	1	0	20	4 -
ICTO	per.		-20	15
	~ ~ -	_,		

Table I: TPR Review of Warrenton Development Code		
TPR Requirement	Local Development Code References and Recommendations	
OAR 660-012-0045		
 (1) Each local government shall amend its land use regula (a) The following transportation facilities, services and improvements need not be subject to land use regulations except as necessary to implement the TSP and, under ordinary circumstances, do not have a significant impact on land use: (A) Operation, maintenance, and repair of existing transportation facilities identified in the TSP, such as road, bicycle, pedestrian, port, airport and rail facilities, and major regional pipelines and terminals; (B) Dedication of right-of-way, authorization of construction and the construction of facilities and improvements, where the improvements are consistent with clear and objective dimensional standards; (C) Uses permitted outright under ORS 215 213(1)(m) through (n)2 and 215 283(1)(h) through 	 tions to implement the TSP. Section 16.20.040 Review of Transportation Facilities and Improvements for Compliance with Land Use Regulations establishes that transportation facilities and improvements meeting one or more of the definitions for transportation facilities and improvements in Chapter 16.12 are permitted outright in most of the City's land use districts. The Development Code has defined a number of transportation-related terms in Section 16.12.010 Definitions, including Level of Service, Pathway/Walkway/Access Way, and Transportation Mode. Transportation Facilities are described as the "physical improvements used to move people and goods from one place to another (e.g., streets, sidewalks, pathways, bike lanes, airports, transit stations and bus stops, etc.)." <u>Recommendation:</u> Existing code provisions address this TPR requirement. No changes to the code are recommended. 	

² Transportation uses in ORS 215.213 and .283 include:

• Climbing and passing lanes within the right of way existing as of July 1, 1987.

Table I: TPR Review of Warrenton Development Code		
TPR Requirement	Local Development Code References and Recommendations	
(n) ³ , consistent with the provisions of 660-012-0065 ⁴ ; and		
(D) Changes in the frequency of transit, rail and airport services.		
(b) To the extent, if any, that a transportation facility, service, or improvement concerns the application of a		
comprehensive plan provision or land use regulation, it may be allowed without further land use review if it is permitted outright or if it is subject to standards that		
do not require interpretation or the exercise of factual,		

- Reconstruction or modification of public roads and highways, including the placement of utility facilities overhead and in the subsurface of ٠ public roads and highways along the public right of way, but not including the addition of travel lanes, where no removal or displacement of buildings would occur, or no new land parcels result.
- Temporary public road and highway detours that will be abandoned and restored to original condition or use at such time as no longer ٠ needed.
- Minor betterment of existing public road and highway related facilities, such as maintenance yards, weigh stations and rest areas, within ٠ right of way existing as of July 1, 1987, and contiguous public-owned property utilized to support the operation and maintenance of public roads and highways.

⁴ OAR 660-012-0065 (Transportation Improvements on Rural Lands); (1) This rule identifies transportation facilities, services and improvements which may be permitted on rural lands consistent with Goals 3, 4, 11, and 14 without a goal exception.

cto	ber	14.	20	15

Table I: TPR Review of Warrenton Development Code		
TPR Requirement	Local Development Code References and Recommendations	
policy or legal judgment.		
(c) In the event that a transportation facility, service or improvement is determined to have a significant impact on land use or requires interpretation or the exercise of factual, policy or legal judgment, the local government shall provide a review and approval process that is consistent with 660-012-0050. To facilitate implementation of the TSP, each local government shall amend regulations to provide for consolidated review of land use decisions required to permit a transportation project.	 Referenced TPR Section -0050 addresses project development and implementation – how a transportation facility or improvement authorized in a TSP is designed and constructed. Project development may or may not require land use decision-making. The TPR directs that during project development, projects authorized in an acknowledged TSP will not be subject to further justification with regard to their need, mode, function, or general location. The City's review process as described in Section 16.20.040 Review of Transportation Facilities and Improvements for Compliance with Land Use Regulations and Section 16.208.070 General Provisions (D.2, Consolidation of Proceedings) is consistent with this TPR requirement. Recommendation: Existing code provisions address this TPR requirement. No changes to the code are recommended. 	
(2) Local governments shall adopt land use or subdivision ordinance regulations, consistent with applicable federal and state requirements, to protect transportation facilities corridors and sites for their identified functions. Such regulations shall include:		
(a) Access control measures, for example, driveway and public road spacing, median control and signal spacing standards, which are consistent with the functional classification of roads and consistent with limiting development on rural lands to rural uses and densities;	Section 16.120.020 Vehicular Access and Circulation refers to access spacing standards in the TSP, and sets block size (including a diagram) for land divisions and large development sites. Transportation standards in Section 16.136.020 are consistent with Vehicular Access and Circulation Standards (e.g., with maximum 1,000-foot block length for non-arterials and non-constrained areas or with minimum 1,800 feet for arterials). Subdivision standards for block size (Section 16.216.050 Approval Criteria—Preliminary Plat) refer to Access and Circulation chapter (Chapter 16.120).	
	<u>Recommendation:</u> Existing code provisions address this TPR requirement. Access standards in Chapter 16.120 will need to be reviewed for consistency with the recommendations of the updated TSP, and revised if necessary.	

Table 1: TPR Review of Warrenton Development Code		
TPR Requirement	Local Development Code References and Recommendations	
(b) Standards to protect the future operations of roads, transitways and major transit corridors;	Chapter 16.256 Traffic Impact Study sets thresholds for studies and includes general requirements (Section 16.256.030 cited below).	
	16.256.030 When Required.	
	A traffic impact study may be required to be submitted to the City with a land use application, when the following conditions apply:	
	A. The development application involves a change in zoning or a plan amendment designation; or,	
	B. The development shall cause one or more of the following effects, which can be determined by field counts, site observation, traffic impact analysis or study, field measurements, crash history, Institute of Transportation Engineers Trip Generation manual; and information and studies provided by the local reviewing jurisdiction and/or ODOT:	
	1. An increase in site traffic volume generation by 300 average daily trips (ADT) or more; or	
	2. An increase in ADT hour volume of a particular movement to and from the state highway by 20% or more; or	
	3. An increase in use of adjacent streets by vehicles exceeding the 20,000 pound gross vehicle weights by 10 vehicles or more per day; or	
	4. The location of the access driveway does not meet minimum site distance requirements, or is located where vehicles entering or leaving the property are restricted, or such vehicles queue or hesitate on the state highway, creating a safety hazard; or	

) ato	han	11	20	15
JCIO	ber	14,	$\angle 0$	цЭ

Table I: TPR Review of Warrenton Development Code		
TPR Requirement	Local Development Code References and Recommendations	
	5. A change in internal traffic patterns that may cause safety problems, such as back up onto the highway or traffic crashes in the approach area.	
	16.256.040 Traffic Impact Study Requirements.	
	A. <u>Preparation</u> . A traffic impact study shall be prepared by a professional engineer in accordance with OAR 734-051-180.	
	B. Transportation planning rule compliance, Section 16.232.060.	
	<u>Recommendation</u> : Existing code provisions generally address this TPR requirement. It is recommended that the City review the existing threshold requirements for a TIA in the context of updated TSP recommendations and identify whether any amendments are needed. In addition, the City should consider the addition of approval criteria (including mitigation measures that must meet adopted safety and/or mobility standards) and replacing the Division 51 reference (which applies to state highway approach applications) with local preparation requirements. If retained, the OAR reference should be updated to correctly reference OAR 734-051-3030.	
(c) Measures to protect public use airports by controlling land uses within airport noise corridors and imaginary surfaces, and by limiting physical hazards to air navigation;	Chapter 16.92 Airport Hazard Overlay (AHO) District provides definitions of terms specific to the overlay, establishes uses permitted outright and conditionally, and includes standards and requirements that protect airport operations from surrounding land use. <u>Recommendation:</u> Existing provisions in the code address this TPR requirement. No changes to the code are recommended.	
(d) A process for coordinated review of future land use decisions affecting transportation facilities, corridors or	See responses and recommendation for TPR Section -0045(1)(c) and -0045(2)(f).	

Table I: TPR Review of Warrenton Development Code		
TPR Requirement	Local Development Code References and Recommendations	
sites;		
(e) A process to apply conditions to development proposals in order to minimize impacts and protect transportation facilities, corridors or sites;	The ability of the decision making body to approve proposals with conditions is authorized for Type II Procedures (Administrative), Type III Procedures (Quasi-Judicial), and Type III Procedures (Legislative and Map Amendments). Review criteria for conditional use applications include transportation impacts, and establish criteria specifically for transportation system facilities and improvements (Section 16.220.030) <u>Recommendation:</u> Existing provisions in the code address this TPR requirement. No changes to the code are recommended.	
 (f) Regulations to provide notice to public agencies providing transportation facilities and services, MPOs, and ODOT of: (A) Land use applications that require public hearings; (B) Subdivision and partition applications; (C)Other applications which affect private access to roads; and (D)Other applications within airport noise corridor and imaginary surfaces which affect airport operations. 	General Provisions (Section 16.208.070) allow for coordinated review with other agencies "(w)hen required by this Code, or at the direction of the Community Development Director." Notice to ODOT, pursuant to Type II, III, and IV procedures, is required when a proposal is adjacent to a State facility or if ODOT is considered an "affected agency." Notice procedures also include requirements related to airports "in accordance with ORS 227.175" for Type II and IV proposals. <u>Recommendations:</u> Existing provisions in the code address this TPR requirement. To strengthen compliance with this requirement, it is recommended that the City consider broadening the types of proposals that would trigger notification to proposals that may have a significant impact on a facility (or service) under the transportation agency's jurisdiction and adding language to involve these agencies in pre-application conferences and application review.	
(g) Regulations assuring amendments to land use designations, densities, and design standards are consistent with the functions, capacities and performance standards of facilities identified in the	See responses and recommendations related to traffic impact study requirements, TPR Section -0045(2)(b), and to plan and land use regulation amendments, TPR Section -0060.	

Table I: TPR Review of Warrenton Development Code		
TPR Requirement	Local Development Code References and Recommendations	
TSP.		
 (3) Local governments shall adopt land use or subdivision section are to provide for safe and convenient pedestrian function of affected streets, to ensure that new developm and bicycle travel in areas where pedestrian and bicycle trautomobile traffic which might interfere with or discoura (a) Bicycle parking facilities as part of new multi-family residential developments of four units or more, new retail, office and institutional developments, and all transit transfer stations and park-and-ride lots. 	n regulations for urban areas and rural communities as set forth below. The purposes of this , bicycle and vehicular circulation consistent with access management standards and the nent provides on-site streets and accessways that provide reasonably direct routes for pedestrian ravel is likely if connections are provided, and which avoids wherever possible levels of ge pedestrian or bicycle travel. Section 16.128.040 addresses bicycle parking requirements for multi-family housing, schools, and public and private parking lots. Providing bicycle parking is required for all uses with more than 10 vehicle parking spaces; multi-family uses with four or more dwelling units must provide at least one sheltered bicycle parking space for each dwelling unit. <u>Recommendations:</u> Existing provisions in the code generally address this TPR requirement. The City should consider if requirements for all institutional uses (e.g., hospitals, churches, vocational schools) are sufficiently addressed in existing provisions and if there is a need to distinguish the requirements for transit-related uses.	
(b) On-site facilities shall be provided which accommodate safe and convenient pedestrian and bicycle access from within new subdivisions, multi- family developments, planned developments, shopping centers, and commercial districts to adjacent residential areas and transit stops, and to neighborhood activity centers within one-half mile of the development. Single-family residential developments shall generally include streets and accessways. Pedestrian circulation	 Provisions of this TPR requirement are addressed in the following ways: Connections between proposed development and adjacent development, transit stops, and community destinations – Requirements for non-motorized connections are found in Section 16.120.030 Pedestrian Access and Circulation. Bikeways and sidewalks – Table 16.136.010 provides City of Warrenton Street Design Standards and includes reference to figures in TSP. Sidewalks are required for all street functional classifications except for "alternative local road," which are intended for low-volume streets in constrained areas. "Bike lanes or on-street parking" are required for all street functional classifications except for "alternative local road." 	

Table I: TPK Review of Warrenton Develo	oment Code
TPR Requirement	Local Development Code References and Recommendations
 through parking lots should generally be provided in the form of accessways. (A) "Neighborhood activity centers" includes, but is not limited to, existing or planned schools, parks, shopping areas, transit stops or employment centers; (B) Bikeways shall be required along arterials and major collectors. Sidewalks shall be required along arterials, collectors and most local streets in urban areas except that sidewalks are not required along controlled access roadways, such as freeways; (C) Cul-de-sacs and other dead-end streets may be used as part of a development plan, consistent with the purposes set forth in this section; (D) Local governments shall establish their own standards or criteria for providing streets and accessways consistent with the purposes of this section. Such measures may include but are not limited to: standards for spacing of streets or accessways; and standards for excessive out-of-direction travel; (E) Streets and accessways need not be required where one or more of the following conditions exist: (i) Physical or topographic conditions make a street or accessway connection impracticable. Such conditions include but are not limited to freeways, 	 Cul-de-sacs – Cul-de-sacs are allowed only where environmental or topographical constraints, existing development patterns, or compliance with other Code standards preclude street extension. They may not provide access to more than 18 dwelling units and are limited to 200 feet in length (Section 16.136.020.M). Pathways (for pedestrians and bicycles) are required where cul-de-sacs or dead-end streets are planned, to connect the ends of the streets together, to other streets, and/or to other developments, as applicable (Section 16.120.030.A.4). Street spacing standards – <i>See response and recommendations related to street and access standards in TPR Section -0045(2)(a).</i> Exceptions for streets and accessways – Block size can be varied to accommodate topography (Section 16.12.020.J.1). Pathway requirements that apply where street connectivity standards cannot be met may be waived due physical or topographic conditions (Section 16.12.0.030.A.4.e). Recommendations: Add provisions to require non-motorized improvements providing connection(s) from planned development to adjacent existing and planned transit stops. "Bike lanes or on-street parking" are required for all street functional classifications except for "alternative local roads." More clearly establish where bike lanes are required. Consider adding standards for minimum walkway spacing through large parking lots. To ensure consistency with the recommendations of the updated TSP, update street design standards in Table 16.136.010. (Update TSP figure numbers in the lead-in to Table 16.136.010.)

Table I: TPR Review of Warrenton Development Code	
TPR Requirement	Local Development Code References and Recommendations
railroads, steep slopes, wetlands or other bodies of water where a connection could not reasonably be provided; (ii) Buildings or other existing development on	
adjacent lands physically preclude a connection now or in the future considering the potential for redevelopment; or	
(iii) Where streets or accessways would violate provisions of leases, easements, covenants, restrictions or other agreements existing as of May 1, 1995, which preclude a required street or accessway connection.	
(c) Off-site road improvements are otherwise required as a condition of development approval, they shall include facilities accommodating convenient pedestrian and bicycle and pedestrian travel, including bicycle ways on arterials and major collectors	See responses and recommendations related to recommended improvements in TLAs in TPR Section - 0045(2)(b) and conditions of approval in Section -0045(2)(e).
(e) Internal pedestrian circulation within new office parks and commercial developments shall be provided through clustering of buildings, construction of accessways, walkways and similar techniques.	See responses and recommendations related to on-site walkways in TPR Section -0045(3)(b).
(4) To support transit in urban areas containing a popula determination has been made that a public transit system	tion greater than 25,000, where the area is already served by a public transit system or where a is feasible, local governments shall adopt land use and subdivision regulations as provided in

(a)-(g) below:

Table 1: TPR Review of Warrenton Development Code						
TPR Requirement	Local Development Code References and Recommendations					
(a) Transit routes and transit facilities shall be designed to support transit use through provision of bus stops, pullouts and shelters, optimum road geometrics, on- road parking restrictions and similar facilities, as appropriate;	The updated TSP will identify transit routes and incorporate appropriate standards for these transportation facilities, consistent with Sunset Empire Transit District Master Plan and this TPR requirement. Table 16.136.010, Footnote 5 indicates Median/Flex Lane can be used for transit routes, including providing extra right-of-way for future transit. <u>Recommendations:</u> Existing code provisions partially address this TPR requirement. Identify design requirements for transit routes and transit facilities through the TSP update process, and then update development code requirements as necessary.					
 (b) New retail, office and institutional buildings at or near major transit stops shall provide for convenient pedestrian access to transit through the measures listed in (A) and (B) below. (A) Walkways shall be provided connecting building entrances and streets adjoining the site; (B) Pedestrian connections to adjoining properties shall be provided except where such a connection is impracticable as provided for in OAR 660-012-0045(3)(b)(E). Pedestrian connections shall connect the on-site circulation system to existing or proposed streets, walkways, and driveways that abut the property. Where adjacent properties are 	See the responses and recommendations related to on-site pedestrian circulation and pedestrian connections to adjacent sites in TPR Sections -0045(3)(b).					
undeveloped or have potential for redevelopment, streets, accessways and walkways on site shall be laid out or stubbed to allow for extension to the						

Table I: TPR Review of Warrenton Development Code					
TPR Requirement	Local Development Code References and Recommendations				
adjoining property;					
(C) In addition to (A) and (B) above, on sites at major transit stops provide the following:	See the responses and recommendations for pedestrian connections to transit stops in TPR Sections $-0045(3)(b)$ and $-0045(4)(a)$ and for transit amenities in TPR Section $-0045(4)(a)$.				
 (i) Either locate buildings within 20 feet of the transit stop, a transit street or an intersecting street or provide a pedestrian plaza at the transit stop or a street intersection; (ii) A reasonably direct pedestrian connection between the transit stop and building entrances on the site; 	Responses in TPR Sections -0045(3)(b) and -0045(4)(a) describe existing code language for providing connections between buildings and streets and transit stops. However, maximum distances between buildings and major transit stops (those with frequent service, within one-quarter mile of medium to high density development, and/or with high ridership volumes) are not established in existing code requirements. <u>Recommendations:</u> Establish maximum distance requirements between building entrances and major transit stops.				
(iii) A transit passenger landing pad accessible to disabled persons;(iv) An easement or dedication for a passenger.					
shelter if requested by the transit provider; and (v) Lighting at the transit stop.					
(c) Local governments may implement (4)(b)(A) and (B) above through the designation of pedestrian districts and adoption of appropriate implementing measures regulating development within pedestrian districts. Pedestrian districts must comply with the requirement of (4)(b)(C) above;	The City is not proposing to designate a pedestrian district at this time. <u>Recommendation:</u> No code changes are recommended.				
(d) Designated employee parking areas in new	Existing code language does not address this TPR requirement.				

Table I: TPR Review of Warrenton Development Code					
TPR Requirement	Local Development Code References and Recommendations				
developments shall provide preferential parking for carpools and vanpools;	<u>Recommendation:</u> Add requirements for off-street parking (Section 16.128.030) to include preferential parking for carpools and vanpools in designated employee parking areas in new commercial, industrial, and civic developments. Note that these requirements can be narrowly applied to parking areas over a certain size or number of parking spaces, and the number of carpool/vanpool spaces required can be calculated as a percentage of total off-street vehicle parking required.				
(e) Existing development shall be allowed to redevelop a portion of existing parking areas for transit-oriented uses, including bus stops and pullouts, bus shelters, park and ride stations, transit-oriented developments, and similar facilities, where appropriate;	Existing code language does not address this TPR requirement. <u>Recommendation</u> : Add provisions in Section 16.128.030 that allow existing development to redevelop a portion of existing parking areas for transit-related improvements identified in the Sunset Empire Transit District Master Plan, granted that minimum parking requirements can still be met.				
(f) Road systems for new development shall be provided that can be adequately served by transit, including provision of pedestrian access to existing and identified future transit routes. This shall include, where appropriate, separate accessways to minimize travel distances;	See the responses and recommendations related to transit access in TPR Sections -0045(3)(b) and - 0045(4)(a).				
(g) Along existing or planned transit routes, designation of types and densities of land uses adequate to support transit.	Existing code and zoning is generally consistent with this TPR requirement to the extent that transit facility improvements recommended in the adopted Sunset Empire Transit District long-range transit plan are located in areas of the city with urban zoning that allows mixed uses and a range of densities.				
	Recommendation: No code changes are recommended at this time. To the extent				

Table I: TPR Review of Warrenton Development Code					
TPR Requirement	Local Development Code References and Recommendations				
	possible, the TSP update process will be coordinated with the Sunset Empire Transit District's plan update and City TSP recommendations will be consistent with the transit plan outcomes.				
(6) In developing a bicycle and pedestrian circulation plan as required by 660-012-0020(2)(d), local governments shall identify improvements to facilitate bicycle and pedestrian trips to meet local travel needs in developed areas. Appropriate improvements should provide for more direct, convenient and safer bicycle or pedestrian travel within and between residential areas and neighborhood activity centers (i.e., schools, shopping, transit stops). Specific measures include, for example, constructing walkways between cul-de-sacs and adjacent roads, providing walkways between buildings, and providing direct access between adjacent uses.	 This requirement will be addressed by the TSP update planning process. The requirement can be met by adopting improvements in developed areas that meet the needs identified in the TSP's pedestrian and bicycle circulation elements. Specific measures identified in this TPR requirement are addressed by the code in the following ways. Walkways between cul-de-sacs and adjacent roads – Pathways (for pedestrians and bicycles) are required at or near mid-block where the block length exceeds the required length (Section 16.120.020) and where cul-de-sacs or dead-end streets are planned, to connect the ends of the streets together, to other streets, and/or to other developments (Section 16.120.030.A.4). Walkways between buildings – See responses and recommendations related to on-site pedestrian circulation on-site in TPR Section -0045(3)(b). Access between adjacent uses – See responses and recommendations related to connections to 				
	adjacent sites and community destinations in TPR Section -0045(3)(b). <u>Recommendation</u> : Existing code provisions address this TPR requirement. No changes to the code are recommended other than those recommended in TPR Section -0045(3)(b).				

Table 1: TPK Review of Warrenton Development Code					
TPR Requirement	Local Development Code References and Recommendations				
(7) Local governments shall establish standards for local streets and accessways that minimize pavement width and total ROW consistent with the operational needs of the facility. The intent of this requirement is that local governments consider and reduce excessive standards for local streets and accessways in order to reduce the cost of construction, provide for more efficient use of urban land, provide for emergency vehicle access while discouraging inappropriate traffic volumes and speeds, and which accommodate convenient pedestrian and bicycle circulation. Notwithstanding section (1) or (3) of this rule, local street standards adopted to meet this requirement need not be adopted as land use regulations.	Street design standards are established in Table 16.136.010 City of Warrenton Street Design Standards and Section 16.136.020 Transportation Standards. They include standards for an "alternative local road," which allows for narrower cross section and pavement sections in constrained situations <u>Recommendation:</u> Existing code provisions address this TPR requirement. Street standards will need to be updated to reflect the recommendations of the updated TSP.				
OAR 660-12-0060					
Amendments to functional plans, acknowledged comprehensive plans, and land use regulations that significantly affect an existing or planned transportation facility shall assure that allowed land uses are consistent with the identified function, capacity, and performance standards of the facility.	Section 16.232.060 specifically addresses TPR compliance. <u>Recommendations:</u> Existing code provisions address this TPR requirement. Section 16.232.060 should be amended to reflect up-to-date TPR citations and the amendments that became effective in 2012. The City may also wish to simplify this code requirement by referencing the TPR, rather than including language from the Rule.				

SECTION 4 **TECH MEMO FOUR** GOALS, OBJECTIVES, AND CRITERIA

MEMORANDUM #4

SUBJECT:	Warrenton Transportation System Plan Update Goals, Objectives, and Evaluation Criteria	P14180-008
FROM:	Ray Delahanty, AICP, DKS Associates Kate Petak, EIT, DKS Associates	
TO:	Warrenton TSP Project Management Team	
DATE:	November 4, 2015	

The purpose of this memorandum is to present the transportation-related goals, objectives and evaluation criteria for the City of Warrenton. The goals are broad statements that describe the community's aspirations for its future. Each goal is developed around a topic area and may never be completely attainable, but is used as a point toward which to strive. Objectives are statements that provide a specific course of action moving the community toward the attainment of its goals. Each new capital improvement project, land use application, or implementation measure must be consistent with the objectives.

The goals and objectives will guide the development of the transportation system plan, while the evaluation criteria will be used to evaluate and prioritize future transportation programs and improvements against the goals and objectives. Once adopted, the goals and objectives, as well as the project list, will become part of Warrenton's Comprehensive Plan. The goals and objectives outlined below were largely developed from previous local plans, including: 2004 Warrenton Transportation System Plan, 2009 Revised Warrenton Transportation System Plan, 2007 Warrenton Urban Renewal District Plan, Warrenton Comprehensive Plan , 2010 Warrenton Downtown and Marina Master Plans, 2005 Hammond Marina Master Plan, 2010 Warrenton Parks Master Plan, and 2008 Warrenton Trails Master Plan.

Goal I: Health

Develop a transportation system that maintains and improves individual health by maximizing active transportation options¹.

Goal I Objectives

- 1. Maximize active transportation options.
- 2. Provide recreational opportunities outlined in the 2008 Warrenton Trails Master Plan.

Goal I Evaluation Criteria

- Increases active transportation options
- Increases recreational opportunities

Goal 2: Safety

Develop a transportation system that maintains and improves public safety and effectively manages evacuations and emergency response preceding and following natural disasters.

Goal 2 Objectives

- 1. Improve safety and provide safe connections for all modes.
- 2. Meet applicable City and Americans with Disabilities (ADA) standards.
- 3. Increase public safety.
- 4. Improve signage for streets, pedestrian and bike ways, and trails as well as directional signs to points of interest.
- 5. Create safe routes and connections for vehicles, bicycles, and pedestrians, especially across US 101.
- 6. Limit access points on highways and major arterials, and use techniques such as alternative access points when possible.
- 7. Increase the city's resilience to natural hazards.

¹ Active transportation refers to any form of travel that is non-motorized and self-propelled, such as walking and bicycling, as well as public transportation, since most trips on public transportation include walking or bicycling.

Goal 2 Evaluation Criteria

- Improves road and railroad crossing safety for all modes
- Increases ADA compliant sidewalks and intersection curb ramps
- Improves public safety
- Improves route connectivity
- Decreases access point along highways and major arterials
- Improves response times/evacuation efficiency

Goal 3: Travel Choices

Develop and maintain a well-connected transportation system that offers travel choices, reduces travel distance, improves reliability, and manages congestion for all modes.

Goal 3 Objectives

- 1. Reduce travel distance for all modes.
- 2. Improve travel reliability for all modes.
- 3. Manage congestion for all modes.
- 4. Encourage ride sharing.
- 5. Work with the Sunset Empire Transportation District to expand transit service, improve amenities, and develop stations in appropriate locations that efficiently serve resident and employee needs.
- 6. Provide a network of arterials, collectors, and paths that are interconnected, appropriately spaced, and reasonably direct.
- 7. Develop unused rights-of-way for pedestrian and bike ways or trails where appropriate.
- 8. Increase access to the transportation system for all modes regardless of age, ability, income, and geographic location.
- 9. Encourage development patterns that offer connectivity and mobility options for all members of the community.
- 10. Balance the desires of community members with public agency requirements.

Goal 3 Evaluation Criteria

- Improves roadway operations
- Improves bus travel time reliability
- Improves bus service for local employees
- Improves bus service for employees commuting to nearby coastal destinations
- Increases connectivity across and between all modes
- Improves pedestrian/bicycle access to key destinations, including transit service

Goal 4: Economic Vitality

Support the development and revitalization efforts of the City, Region, and State economies and create a climate that encourages growth of existing and new businesses.

Goal 4 Objectives

- 1. Balance needs for freight system efficiency, access, and capacity with needs for local circulation, safety, and access.
- 2. Manage parking efficiently and ensure that it supports downtown business needs and promotes new development.
- 3. Balance the simultaneous needs to accommodate local traffic and through-travel on state highways.
- 4. Provide transportation facilities that support existing and planned land uses.
- 5. Enhance the vitality of the Warrenton downtown area by incorporating design elements for all modes in roadway design standards.
- 6. Ensure that all new development contributes a fair share toward on-site and off-site transportation system improvements.
- 7. Support expansion of local boating and shipping activities, including the development of waterfront activities along the Skipanon River, Youngs Bay, and Alder Cove.
- 8. Enhance the connection of the Warrenton Harbor to the surrounding community.
- 9. Enhance tourism opportunities and access to tourist attractions.

Goal 4 Evaluation Criteria

- Minimizes negative impacts to existing land uses (built environment)
- Improves parking efficiency
- Improves freight access/connectivity
- Improves bicycle and pedestrian access to the downtown area
- Increases capacity for boating and shipping activities

Goal 5: Livability

Customize transportation solutions to suit the local context while providing a system that supports active transportation, promotes public health, facilitates access to daily needs and services, and enhances the livability of Warrenton neighborhoods and business community.

Goal 5 Objectives

- 1. Minimize adverse social and economic impacts created by the transportation system, including balancing the need for street connectivity and the need to minimize neighborhood cut-through traffic.
- 2. Develop safe, connected pedestrian and bicycle facilities near schools, high-density residential districts, commercial districts, and waterfront areas.
- 3. Balance downtown livability with the need to accommodate freight access to industrial and waterfront areas.
- 4. Design streets to serve the widest range of users, support adjacent land uses, and increase livability.
- 5. Enhance the quality of life in commercial areas and in neighborhoods.
- 6. Improve public access to the waterfront and trails along the waterfront.
- 7. Develop transportation facilities that will allow development without major disruption of existing neighborhoods or the downtown area.

Goal 5 Evaluation Criteria

- Reduces/discourages through travel in residential neighborhoods
- Increases connections/access to community amenities
- Enhances street aesthetics
- Reduces impacts from trucks downtown

Goal 6: Sustainability

Provide a sustainable transportation system that meets the needs of present and future generations and is environmentally, fiscally and socially sustainable.

Goal 6 Objectives

- 1. Support travel options that allow individuals to reduce single-occupant vehicle trips.
- 2. Minimize damage to the environment.
- 3. Support the reduction of greenhouse gas emissions from transportation sources.
- 4. Support and encourage transportation system management (TSM) and transportation demand management (TDM) solutions to congestion.
- 5. Preserve and protect the City's historic sites.

Goal 6 Evaluation Criteria

- Avoids negative impacts to environmentally sensitive areas
- Reduces vehicle miles traveled
- Minimizes impacts to historic sites
- Increases alternatives to single-occupant vehicle travel

Goal 7: Fiscal Responsibility

Plan for and implement an economically viable transportation system that protects and improves existing transportation assets while cost-effectively enhancing the total system.

Goal 7 Objectives

- 1. Plan for an economically viable and cost-effective transportation system.
- 2. Identify and develop diverse and stable funding sources to implement recommended projects in a timely fashion and ensure sustained funding for transportation projects and maintenance.
- 3. Make maintenance and safety of the transportation system a priority.
- 4. Maximize the cost effectiveness of transportation improvements by prioritizing operational enhancements and improvements that address key safety and congestion issues.
- 5. Identify local street improvement projects that can be funded through grant programs.

- 6. Provide funding for the local share (i.e. match) of capital projects jointly funded with other public partners.
- 7. Prioritize funding of projects that are most effective at meeting the goals and policies of the Transportation System Plan.

Goal 7 Evaluation Criteria

- Increases the efficiency of existing facilities without expanding or building new facilities
- Provides significant increase in mobility/accessibility

Goal 8: Compatibility

Develop a transportation system that is consistent with the City's Comprehensive Plan and that is coordinated with County, State, and Regional plans.

Goal 8 Objectives

- 1. Coordinate, support, and cooperate with adjacent jurisdictions and other transportation agencies to develop transportation projects that benefit the City, Region, and State as a whole (e.g. evacuation routes, countywide transit, and jurisdictional transfer of roadways).
- 2. Work collaboratively with other jurisdictions and agencies to ensure the transportation system functions seamlessly.
- 3. Coordinate land use and transportation decisions to efficiently use public infrastructure investments to meet goals and objectives.
- 4. Maintain and implement functional classification standards and criteria.
- 5. Coordinate with other jurisdictions and community organizations to develop and distribute transportationrelated information.
- 6. Review City transportation standards periodically to ensure consistency with Regional, State, and Federal standards.
- 7. Coordinate with the County and State agencies to ensure that improvements to County and State highways within the city benefit all modes of transportation.
- 8. Participate with ODOT, Clatsop County, and Astoria in the revision of their transportation system plans, and coordinate with neighboring jurisdictions regarding land development outside of the Warrenton urban growth boundary to ensure provision of a transportation system that serves the needs of all users.
- 9. Participate in updates of the ODOT State Transportation Improvement Program (STIP) and Clatsop County Capital Improvement Program (CIP) to promote the inclusion of projects identified in the Warrenton TSP.
- 10. Coordinate with the U.S. Army Corps of Engineers and the Oregon Division of State Lands to maintain

appropriate operating depths at marina facilities, and identify beneficial uses of dredged material resulting from maintenance dredging.

- 11. Work to protect airspace corridors and airport approaches.
- 12. Coordinate planning for lifeline and evacuation routes with local, State, and private entities.

Goal 8 Evaluation Criteria

Supports and is consistent with regulatory documents

SECTION 5 **TECH MEMO FIVE** EXISTING CONDITIONS

MEMORANDUM #5

	008	
	Task 4.2 Evaluate Existing Conditions	P14180-
SUBJECT:	Warrenton Transportation System Plan	
	Angela Rogge, PE, David Evans and Associates, Inc.	
FROM:	Shelly Alexander, PE, David Evans and Associates, Inc.	
TO:	Warrenton TSP Project Management Team	
DATE:	October 31, 2016	

This memorandum provides an existing transportation system conditions analysis to determine existing conditions, problems, and deficiencies for all modes within the City of Warrenton, Oregon. The study area and analysis intersections, shown in Figure 1, fall within the City limits.

An inventory of the existing transportation system in Warrenton was conducted as part of the Transportation System Planning (TSP) process. This memorandum highlights what it means to live in Warrenton and what a visitor to the area might experience. In addition to looking at what makes Warrenton unique, this inventory includes a closer look at what infrastructure is currently in place, including the street, pedestrian, bikeway, public transportation, rail, air, water, and pipeline systems within the City of Warrenton City Limits and Urban Growth Boundary (UGB).

Warrenton City Character

Warrenton is situated on the most northwestern point of Oregon, adjacent to the Pacific Ocean, Fort Stevens Park and the mouth of the Columbia River. Although Warrenton has a shared history and ongoing connection with the City of Astoria, its neighbor to the northeast, Warrenton has its own unique character. Warrenton residents and visitors alike have access to significant amounts of open space, city parks and water features, as well as important historical sites, within the City's boundaries.

Points of Interest

An important aspect of evaluating and planning an effective transportation system is knowing where the people want to go. Warrenton has several destinations that attract a variety of visitors (see Figure 2, Page 3). Generally, these community features can be grouped into the following:

- Schools (e.g. Warrenton Prep, Warrenton Grade School, Warrenton High School)
- Places of employment (e.g. business areas, industrial areas, offices, airport)
- Shopping (e.g. downtown core, grocery stores, shopping centers, restaurants)
- Recreational (e.g., Fort Stevens State Park, beach, Warrenton Waterfront Trail)
- Cultural (e.g. Maddox Dance Studio, library, Wreck of Peter Iredale)
- Public Transportation (e.g. Bus stops)

Data Sources:

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Figure 1 Study Area

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM5\Fig_X_WarrentonTSP_Project_Intersections.mxd

CITY OF WARRENTON | Transportation System Plan

Data Sources: ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Figure 2 Community Features

Document Path: P:\D/D/KSA00000004\0600/INFO\GS\Maps\WarrentonTSP - TM5\Fig_02_WarrentonTSP_CommunityFeatures.mxd

Travel Patterns

As previously mentioned, Warrenton has its own unique transportation identity, although it is important to recognize its connection to the City of Astoria; many people live in one community and work in the other. Table 1 summarizes the year 2014 employment destinations for people who lived within the City Limits of Warrenton; 2014 is the most recent year of available data. The majority of Warrenton residents actually work outside of the city. Conversely, approximately 80 percent of the people working in Warrenton commute from outside of the city limits; further emphasizing the two-way connections between Warrenton and surrounding communities and the dependence on the transportation network to get from home to work.

Employment Destination	Warrenton Residents			
Living and Employed in Warrenton	18%			
Outside of Warrenton	82%			
Astoria	18%			
Seaside	8%			
Portland	8%			
Other	48%			

Table 1. 2014 Inflow/Outflow Job Counts

Source: U.S. Census Bureau. 2016. OnTheMap Application. Longitudinal-Employer Household Dynamics Program. <u>http://onthemap.ces.census.gov/</u>

Balancing Natural Resources with Commercial Needs

Warrenton is surrounded by and includes significant areas of open space and natural resources. These resources are important to the economic vitality of the region and many areas are of historical significance due to their association with the Lewis and Clark Expedition.

As seen in Figure 3, commercial development is concentrated in downtown along Fort Stevens Highway (OR 104) and US 101, including several regional or national chains such as Costco, Home Depot and Fred Meyer.

Industrial development is primarily located in the southeastern portion of Warrenton (east of US 101 near the Astoria Regional Airport and SE Dolphin Avenue) and in the north central portion of Warrenton (off NE Skipanon Drive near the Skipanon Waterway and Warrenton Mooring Basin), and further north along Fort Stevens Highway OR 104 adjacent to the Columbia River.

Residential areas are scattered throughout Warrenton and west of US 101. The residential pockets provide a buffer between commercial and industrial land uses and the natural resources (Wetlands, Open Space, Recreation, Shorelands, as seen in Figure 4) on the western edges of Warrenton. Figures with additional details on land use and natural resources may be found in Appendix A.

Data Sources:

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Figure 3

Land Use

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM5\Fig_03_WarrentonTSP_LandUse_Inventory.mxd

Data Sources:

ESRI, ArcGIS Online, World Topography Map. 2015. Oregon Geospatial Enterprise, US Fish and Wildlife Service, FEMA, City of Warrenton, Clatsop County, Oregon. 2015.

Figure 4

Natural Resources

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM5\Fig_04_WarrentonTSP_Natural Resources.mxd

Demographics

Demographic characteristics usually inform what modes and methods of transportation will most benefit a population. The approximate population of Warrenton is 5,175¹, but like many cities, the population isn't homogenous. The transportation system also is expected to serve more than just its residents, with large numbers of people visiting the Oregon Coast every year.

Transportation Disadvantaged Population (Environmental Justice)

Executive Order (EO) 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations of February 11, 1994, requires agencies undertaking federal projects to identify low-income and minority populations; assess whether high and adverse human health or environmental impacts would result from the alternatives; and ensure participation of low-income and minority populations in the transportation decision making process. Many roadways within Warrenton are under the State's jurisdiction. Since it is possible the state could utilize federal funds for transportation projects, the City must also integrate environmental justice in its transportation planning work. Environmental justice communities include low income, minority, or elderly households.

Elderly, residents over 65 years old, and youth, residents under 18 years old are less likely to be able to drive and are more dependent on walking, bicycling, or taking transit for transportation. Downtown Warrenton experiences a higher density of seniors and a greater number of households than the remainder of Warrenton. Figures with additional details on the transportation disadvantaged populations may be found in Appendix A

Barriers to Accessible Transportation

Transit is accessible in downtown Warrenton; both the number 10 and 15 bus lines service this area and connect individuals to both northwestern Warrenton and US 101. However, public transportation does not connect down to Warrenton High School, located along OR 104 between OR 104S and Southwest 18th Street, or the surrounding communities. This is limiting for individuals attempting to reach the school or southernmost residential areas by public transportation. However, recent pedestrian and bicycle upgrades along OR 104 extend to the high school and improve the accessibility of active transportation² to the area. Warrenton Grade School, located at Southwest 9th Street and Southwest Cedar Avenue, is in a residential area with local roads, but still over a half mile from the nearest transit stop. While the transit stops are over a half mile away from the area schools, there is a school bus system that provides transportation to students; routes are updated each school year. The major collector and arterial roads nearest to the school have sidewalks present.

¹ Portland State University Population Estimates, website: <u>https://www.pdx.edu/prc/population-reports-estimates</u>, 2015.

² Active transportation is any self-propelled, human-powered mode of transportation, such as walking or bicycling.

Street System

This section summarizes the existing street network and important characteristics of the study area roadways. Several jurisdictions, including the Oregon Department of Transportation (ODOT), Clatsop County and the City of Warrenton, maintain portions of the existing street system within the study area. A comprehensive inventory was conducted of all arterial and collector streets within the City's UGB. This data collection was updated using aerial photography and online databases.

Functional Classification

Streets and highways are assigned a classification to indicate purpose, design and function. This functional classification ensures that streets are built and maintained with features that can support demand from both the surrounding land uses and from traffic that may be traveling through parts of the city. It also describes how adjacent properties are accessed and how much mobility the street provides, as illustrated below.

Functional Classification

There are four roadway classifications within the city of Warrenton including principal arterial (highway), minor arterial, major collector, and local roadways. If desired, these classifications can be further divided by land use (rural and urban). The classification system facilitates the design and management of the roadway; it allows for safe and efficient travel based on the desired objectives, as described above.

There is one state highway and three district highways that provide connections throughout Warrenton. US 101 and Fort Stevens Highway travel north-south while Fort Stevens Spur and Warrenton-Astoria Highway travel east-west. The district highways and collector routes generally provide access and circulation throughout Warrenton and to US 101.

General descriptions of the classifications include:

- Arterial streets are intended to serve as primary routes for travel between major urban activity. Major/principle and minor arterial streets provide the same general function while varying in the level of traffic volume.
- Collector streets gather traffic from neighborhoods but also serve abutting lands, particularly commercial uses. Major collector streets can serve residential, commercial, industrial, or mixed land uses, while minor collector streets are primarily intended to serve abutting lands and local access needs of neighborhoods. Minor collector streets can serve residential, commercial, industrial, or mixed land uses.
- Local streets are intended to serve the adjacent land without carrying through traffic. Generally, local streets operate at low speeds, provide limited mobility and carry low traffic volumes.

Roadway ownership and maintenance responsibilities of the various roadways in the study area are carried out by the respective local and county agencies while state routes are under ODOT jurisdiction.

Access Spacing

Access management is an important key to balanced urban growth. As evidence, the lack of a prudent access management plan has led to miles of strip commercial development along the arterial streets of many urban areas. Business activities along arterial streets lead to increased traffic demands and the provision of roadway improvements to accommodate the increasing traffic demand. Roadway improvements stimulate more business activity and traffic demands. This often continues in a cyclical fashion, and requires extensive capital investments for roadway improvements, the financial resources to pay for such solutions are becoming increasingly scarce.

Reducing capital expenditures is not the only argument for access management. Additional driveways along arterial streets lead to an increased number of potential conflict points among vehicles entering and exiting the driveways, and through vehicles on the arterial streets. This leads to increased vehicle delay and deterioration in the level of service on the arterial. Increases in volumes and conflict points may also lead to a reduction in safety. Thus, it is essential that all levels of government try to maintain the efficiency of existing streets through better access management.

Table 2 describes recommended access management spacing standards by roadway functional classification for all categories of streets in Warrenton.

Functional Classification	Posted Speed	Minimum Spacing	
US 101	55 mph	1320 Feet	
US 101	40-45 mph	800 feet	
District Highway	40-45 mph	500 feet	
District Highway	30-35 mph	350 feet	
District Highway	25 mph	250 feet	
Local Roadways		25 Feet	

Table 2. ODOT Access Spacing Standards

Source: *Oregon Highway Plan (OHP), Appendix C

Roadway Inventory

An inventory was conducted for arterial and collectors within the study area, and Table 3 presents an overview of these roadways, their functional classification, as well as their jurisdiction, typical right-of-way (ROW), posted speed, number of lanes, pavement information, and important road usages. Figure 5 also displays the roadway system and other transportation related inventory information such as bridge locations, intersection traffic control, and functional classification of roadways.

All of the arterials and collectors listed in Table 3 are listed Evacuation Routes. Additionally, US 101 is part of the National Highway System (NHS), is a designated a High Clearance Freight Route, and is a listed Lifeline Route. All bridges within Warrenton are considered fair or better, and their locations can be seen in Figure 5. However, one bridge—along OR 104S and over the Skipanon River—is considered functionally obsolete, while still being in satisfactory condition.

The only freight route through Warrenton is US 101, which serves as a Federal Truck Route. US 101 crosses over Youngs Bay and handles freight traffic to and from Astoria and the Port of Astoria, as well as more southern destinations.

Tsunami/Earthquake Evacuation Routes

Much of the coast line surrounding Warrenton, including downtown Warrenton, falls under a distant tsunami evacuation zone, while the majority of remaining area within Warrenton should evacuate if a local Cascadia earthquake occurs. Much of the land surrounding the Skipanon River also falls under a distant tsunami evacuation zone. The safest evacuation areas within Warrenton include Ridge Road and the area bounded by southeast of US 101, Ensign Lane, and US 101B. These include congregation areas near Ridge Road and Southwest 9th Road, Ridge Road and Southwest Long Lake Drive, and Ensign Lane and Southeast 19th Street. Most evacuation routes follow the collector and arterial road network, with prominent routes including Ridge Road, OR 104, US 101, and East Harbor Road. However, because much of OR 104 falls under a distant tsunami zone, and includes two bridges—one over Alder Creek, one over the Skipanon River that connects OR 104 to Northwest Harbor Place—there are inherent risks to relying on this as an evacuation route. If this route fails, there are limited possibilities for residences along the northeastern shoreline to evacuate. However, if Ridge Road can be reached, its relatively high elevation and capacity provide sufficient support to move people south to safe congregation areas.³

³ Tsunami Evacuation Map: <u>http://www.oregongeology.org/pubs/tsubrochures/WarrentonEvacBrochure-5-29-13</u> onscreen.pdf

Table 3. Inventory of Arterials and Collectors

Deeducy News	Functional	Inviodiction		Speed	No. of	Paved Width	Pavement	Important
		Junjanetion		(inpir)	Lancs	(10)	Condition	NHS, High Clearance
US 101 (Oregon Coast Hwy)	Principal Arterial	State	150-250	45-55 ¹	2-4 ²	24-36	Good/Fair	Route, Tier 3 lifeline route, Evacuation Route
OR 104/Ft. Stevens Hwy	Major Collector	State	60-100	25-45 ³	2	22-46 ⁴	Fair	Evacuation Route
US 101B/ Warrenton-Astoria Hwy	Major Collector/ Minor Arterial ⁵	State	90-220	25-55 ⁶	2	24-44	Poor/Good	Evacuation Route
E Harbor St	Major Collector	State	60-125	45	2-3 ⁷	26-40	Good/Very Good	Evacuation Route
Ridge Rd	Major Collector	Clatsop County	155-330	45	2	22-30	*	Evacuation Route
SE Ensign Ln	Major Collector	Clatsop County/ Municipal Street	100-160	35	3-5	36-76	Very Good	Evacuation Route
OR 104S	Major Collector	State	65-80	45	2	*	Very Good	Evacuation Route
Marlin Ave	Minor Arterial	State	70-120	35	2	*	Good	
SW 18 th St	Major Collector	City of Warrenton	100-130	35	2	*	Good	Evacuation Route
SE 12 th Pl	Minor Arterial	City of Warrenton	75-80	35	2	*	Very Good	Evacuation Route

Notes:

1. Speed limit is 55 mph on Youngs Bay Bridge and shortly after the SE Ensign Ln at US 101 intersection.

2. Number of lanes increases from 2 to 3 to 4 as cars approach the signalized intersection of US 101 and SE Ensign Ln

3. Speed limit is 25 mph in the Hammond and Warrenton core, then transitions to 35 mph before reaching 45 mph from 7th Avenue to NW 4th Street.

4. Width of roadway significantly increases through town on S Main Avenue

5. Classified as a Major Collector west of US 101 and as a Minor Arterial east of US 101

6. Speed limit increases in 10 mph increments from 25 mph at downtown Warrenton to 55 mph at the eastern City Limits.

7. Number of lanes increases to three across Holbrook Slough River.

8. Data sourced from TransGIS⁴, Google StreetView, and Bing Streetview.

⁴ TransGIS: <u>http://gis.odot.state.or.us/transgis/</u>

Data Sources:

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Figure 5 Functional Classification

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM5\Fig_05_WarrentonTSP_FunctionalClass.mxd
Existing Transportation Operations

The assessment of traffic conditions includes development of existing traffic volumes and an assessment of traffic operations.

Study Area Intersections

The TSP study area includes 24 intersections for analysis (see Figure 1, page 2):

- 1. Pacific Dr at Ridge Rd/Lake Dr
- 2. Pacific Dr at Iredale St
- 3. OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street
- 4. OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave
- 5. Warrenton-Astoria Hwy at SE Galena Ave
- 6. E Harbor St at Marlin Dr
- 7. E Harbor St at SE Neptune Dr¬
- 8. E Harbor St at Young's Bay Plaza Access
- 9. E Harbor St at US 101 (signalized)
- 10. SW 2nd St/SW Gardenia Ave
- 11. OR 104/S Main Ave at SW 2nd St
- 12. US 101 at SE Neptune Dr (signalized)
- 13. US 101 at Marlin Dr (signalized)

- 14. NW Ridge Rd at SW 9th St
- **15.** SW 9th St at OR 104/Ft Stevens Hwy
- 16. OR 104S/Ft Stevens Hwy Spur at US 101
- 17. US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US 101Bus/Marlin Dr
- 18. Delaura Beach Ln at Ridge Rd
- OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave
- 20. SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy
- **21.** SE Ensign Ln at US 101
- 22. SE Ensign Ln at SE 19th St
- 23. SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur
- **24.** US 101 at SE Dolphin Ave

Traffic Data Collection

The transportation and traffic analysis was based on existing year 2015 conditions for the design hour (30th highest) volumes.

ODOT provided the following traffic counts:

- 16-hour turning movement counts, including bicycles and pedestrians with 15 minute breakdowns between 7:00 AM to 10:00 AM and 4:00 PM to 7:00 PM – 3 locations
- 3-hour PM peak turning movement counts, including bicycles and pedestrians, with 15 minute break downs between 4:00 PM and 7:00 PM 19 locations
- 4-hour PM peak turning movement counts near schools, including bicycles and pedestrians, with 15 minute breakdowns between 2:30 PM and 6:30 PM 2 locations

Generally, the majority of the traffic counts were conducted in the year 2015. There are three intersections that were conducted in September, 2013 which were grown to year 2015.

Design Hourly Volumes

ODOT generally requires that transportation facilities be analyzed under design hourly volumes (DHVs), known as 30th highest hour volumes. The 30th highest hour volumes are used in traffic operations analysis so that results are valid for all but a few hours of the year. The procedure for determining 30th highest hour volumes is specified in ODOT's Analysis Procedures Manual (APM)⁵. Further details on the traffic analysis methodology may be found in Appendix B, while the volume development is available in Appendix C. Also available in Appendix C is the Average Weekday Traffic.

Motor vehicle volumes on the roadways in Warrenton peak during the evening between 4:00 p.m. and 5:00 p.m., but generally vary depending on the time of year. During the summer months, traffic volumes increase due to an influx of vacationers and visitors to Warrenton.

Figure 6 (page 16) shows the existing balanced 30th highest hour PM peak volumes developed for this project. The intersections that see the highest vehicular volumes during the peak hour are all located along US 101, with highest vehicular volumes occurring at the intersection of SE Ensign Lane and US 101.

Truck Traffic

The percentages of trucks per approach at the study intersections, based on the intersection counts, range from 0-15% during the peak hour. Heavy vehicle traffic is highest along US 101 and at the intersections along Warrenton-Astoria Highway, which is consistent with US 101's designation as a High Clearance Freight Route and the industrial land uses served along Warrenton-Astoria Highway. Other roads under ODOT jurisdiction (Fort Stevens Highway OR 104 and Fort Stevens Highway OR 104 Spur) also move truck traffic through Warrenton. During the peak hour, US 101 at Marlin Drive experienced the highest volume of heavy vehicles, with nearly 90 trucks traveling through the intersection (five percent of the peak hour total entering volume). The intersection with the next highest volume of trucks during the peak hour was Fort Stevens Highway OR 104 at Skipanon Drive/Main Avenue; the 64 trucks during the peak hour accounted for six percent of the total entering volume.

Generally, heavy vehicles are more likely to be traveling north-south. Much of the freight movement in Warrenton may be attributed to the logging and fish processing operations around Tansy Point and Skipanon Waterway (accessed via Skipanon Drive). The Astoria Regional Airport also generates significant truck traffic. See Table 4 for a summary of heavy vehicle percentages by approach at study area intersections.

⁵ Analysis Procedures Manual, Oregon Department of Transportation, Transportation Development Division Planning Section, Transportation Planning and Analysis Unit, Salem, Oregon, April, 2006, Section 4.3.

		Approach						
	Intersection	Eastbound	Westbound	Northbound	Southbound			
1.	Pacific Dr at Ridge Rd/Lake Dr	0%	2%	6%	0%			
2.	Pacific Dr at Iredale St	4%	1%	0%	15%			
3.	OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street	2%	0%	2%	4%			
4.	OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	9%	4%	5%	11%			
5.	Warrenton-Astoria Hwy at SE Galena Ave	3%	2%	0%	0%			
6.	E Harbor St at Marlin Dr	4%	3%	1%	-			
7.	E Harbor St at SE Neptune Dr-	4%	3%	0%	-			
8.	E Harbor St at Young's Bay Plaza Access	5%	3%	3%	2%			
9.	E Harbor St at US 101 (signalized)	2%	-	1%	0%			
10.	SW 2nd St/SW Gardenia Ave	0%	3%	11%	0%			
11.	OR 104/S Main Ave at SW 2nd St	3%	9%	1%	2%			
12.	US 101 at SE Neptune Dr (signalized)	0%	-	1%	1%			
13.	US 101 at Marlin Dr (signalized)	5%	5%	6%	7%			
14.	NW Ridge Rd at SW 9th St	-	3%	10%	3%			
15.	SW 9th St at OR 104/Ft Stevens Hwy	0%	0%	2%	1%			
16.	OR 104S/Ft Stevens Hwy Spur at US 101	0%	0%	2%	3%			
17.	US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US 101Bus/Marlin Dr	8%	2%	0%	3%			
18.	Delaura Beach Ln at Ridge Rd	7%	8%	0%	5%			
19.	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave	-	3%	6%	2%			
20.	SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	5%	-	7%	4%			
21.	SE Ensign Ln at US 101	0%	0%	1%	1%			
22.	SE Ensign Ln at SE 19th St	3%	0%	7%	0%			
23.	SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur	5%	4%	-	11%			

3%

24. US 101 at SE Dolphin Ave

Table 4. Existing (Year 2015) Peak Hour Truck Freight Percentages by Approach

2%

3%

0%

Warrenton TSP

Figure 6

Existing Conditions (2015) PM Peak Hour (4:00 - 5:00 PM) Turning Movement Volumes

Legend

Allowable Movement

TEV Total Entering Volume

PM Peak Hour Turning Movement Volume

Signalized Intersection

STOP Controlled Approach

Study Area Intersection

Operational Criteria

Transportation engineers have established various methods for measuring traffic operations of roadways and intersections. Most jurisdictions use either volume-to-capacity (v/c) ratio or level of service (LOS) to establish performance criteria. Both the LOS and v/c ratio concepts require consideration of factors that include traffic demand, capacity of the intersection or roadway, delay, frequency of interruptions in traffic flow, relative freedom for traffic maneuvers, driving comfort, convenience, and operating cost.

Volume-to-Capacity (V/C) Ratio

A comparison of traffic volume demand to intersection capacity is one method of evaluating how well an intersection is operating. This comparison is presented as a v/c ratio. A v/c ratio of less than 1.00 indicates that the volume is less than capacity. When it is closer to 0, traffic conditions are generally good, with little congestion and low delays for most intersection movements. As the v/c ratio approaches 1.00, traffic becomes more congested and unstable, with longer delays.

Level of Service (LOS)

Level of service is also a widely recognized and accepted measure and descriptor of traffic operations. At both stop-controlled and signalized intersections, LOS is a function of control delay, which includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Six standards have been established, ranging from LOS A, where there is little or no delay, to LOS F, where there is delay of more than 50 seconds at unsignalized intersections, or more than 80 seconds at signalized intersections.

It should be noted that, although delays can sometimes be long for some movements at a STOP-controlled intersection, the v/c ratio may indicate that there is adequate capacity to process the demand for that movement. Similarly at signalized intersections, some movements, particularly side street approaches or left turns onto side streets, may experience longer delays because they receive only a small portion of the green time during a signal cycle, but their v/c ratio may be relatively low. For these reasons, it is important to examine both v/c ratio and LOS when evaluating overall intersection operations. Both are reported in the following section.

Operational Standards

The City does not currently have a mobility target for its local streets; the project team anticipates reviewing mobility targets as part of the work involving updates to the City code. The traffic analysis will rely on Clatsop County and ODOT mobility targets for evaluation of intersection operations. A summary of mobility targets by study area intersection is provided in Table 5.

Clatsop County facilities have mobility targets that vary by intersection control. For signalized, all-way stop, or roundabout controlled intersections, the intersection as a whole must meet Level of Service (LOS) "E" or better and a volume to capacity (v/c) ratio not higher than 0.85. For two-way stop and yield controlled intersections, all movements serving more than 20 vehicles shall be maintained at LOS "E" or better and a v/c ratio not higher than 0.90. LOS "F" is acceptable at movements serving no more than 20 vehicles during the peak hour.

For State facilities, the Oregon Highway Plan (OHP) and the Highway Design Manual (HDM) will be used in the assessment of intersection operations. Both documents base their mobility performance on the calculation of volume-

to-capacity (v/c) ratios; however, the standards in the HDM are based on higher performance levels than those in the OHP. The mobility targets from the OHP will be applied to the existing and future baseline (no build) analysis while the standards from the HDM will be applied to the evaluation of design alternatives.

		Mobility Ta	arget ¹
ID	Count Location	Clatsop County ²	OHP ³
1	Pacific Dr at Ridge Rd/Lake Dr ⁴	v/c <=0.85, LOS E	1.0
2	Pacific Dr at Iredale St ⁴	v/c <=0.90, LOS E	1.0
3	OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street	v/c <=0.90, LOS E	0.95
4	OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	v/c <=0.85, LOS E	0.95
5	Warrenton-Astoria Hwy at SE Galena Ave	v/c <=0.90, LOS E	0.95
6	E Harbor St at Marlin Dr ⁴		0.90 / 0.95
7	E Harbor St at SE Neptune Dr	v/c <=0.90, LOS E	0.90
8	E Harbor St at Young's Bay Plaza Access	v/c <=0.90, LOS E	0.90
9	E Harbor St at US 101 (signalized)		0.80
10	SW 2nd St/SW Gardenia Ave	v/c <=0.90, LOS E	
11	OR 104/S Main Ave at SW 2nd St ⁴	v/c <=0.90, LOS E	1.00
12	US 101 at SE Neptune Dr (signalized)		0.80
13	US 101 at Marlin Dr (signalized)		0.80
14	NW Ridge Rd at SW 9th St	v/c <=0.90, LOS E	
15	SW 9th St at OR 104/Ft Stevens Hwy	v/c <=0.90, LOS E	0.95
16	OR 104S/Ft Stevens Hwy Spur at US 101		0.80 / 0.90
17	US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US		0.90 / 0.95
	101Bus/Marlin Dr		
18	Delaura Beach Ln at Ridge Rd	v/c <=0.90, LOS E	
19	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave		0.95/0.90
20	SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	v/c <=0.90, LOS E	0.95
21	SE Ensign Ln at US 101 (signalized)	v/c <=0.85, LOS E	0.80
22	SE Ensign Ln at SE 19th St	v/c <=0.90, LOS E	
23	SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur	v/c <=0.90, LOS E	0.90
24	US 101 at SE Dolphin Ave	v/c <=0.90, LOS E	0.80

Notes:

1. Unsignalized intersections may have two different mobility targets for the major and minor approaches

2. As the City of Warrenton does not currently have an adopted mobility target for local roads, the Clatsop County mobility targets were assumed for operational analysis

3. Table 6: Volume to Capacity Ratio Targets Outside Metro, Oregon Highway Plan, 1999

4. Intersection part of a Special Transportation Area (STA)

As noted in the table, a few of the study area intersections fall along highway segments designated as Special Transportation Areas (STA). An STA provides access to community activities, businesses, and residences, including pedestrian access along and across a highway, within a downtown, business district, and/or community center. Intersections within an STA have mobility targets that are less conservative, accepting of a higher level of congestion due to the increased activity in the vicinity.

Traffic Operations Analysis Procedures

All operations for unsignalized intersections were evaluated using the methodology outlined in the 2010 Highway Capacity Manual (HCM), all operations for signalized intersections were evaluated using methodology outlined in the 2000 HCM, and operations were further benefited by procedures outlined in ODOT's Analysis Procedures Manual

(APM). The Synchro (version 9) analysis software was selected to perform the intersection analysis since it can provide the v/c ratio and LOS output of an HCM analysis.

Synchro is a macroscopic model similar to the Highway Capacity Software (HCS), and like the HCS, is based on the 2000 and 2010 HCM. The Synchro model explicitly evaluates traffic operations under coordinated and uncoordinated systems of signalized and unsignalized intersections. The v/c ratios and LOS presented in this report are based on the Synchro model output.

Existing PM Peak Traffic Operations

Existing (2015) PM peak hour traffic operations were evaluated at the 24 study area intersections. Operations are described in the following sections and the detailed analysis worksheets are presented in Appendix D.

Intersection Operations

Table 6 reports the operational results for the critical movement (worst movement that must stop or yield the right of travel to other traffic flows) with all individual movements reported in Figure 7. Critical movements at unsignalized intersections are typically the minor-street left turns or, in the case of single-lane approaches, the minor street approaches. These movements are required to yield to all other movements at the intersection and thus are subject to the longest delays and have the least capacity. Left turns from the major street are also subject to delays, since motorists making these maneuvers must also yield to oncoming major-street traffic.

Analysis of the PM peak shows there are four intersections within the study area that are not meeting mobility targets. All intersections are signalized and located along US 101, thus are held to the OHP standard of a 0.80 v/c. These intersections are US 101 at East Harbor Street (1.05), US 101 at Neptune Drive (0.88), US 101 at Marlin Drive (1.02), and US 101 at Ensign Lane (1.03).

Each of these intersections far exceeds the applicable mobility targets. In addition to not meeting mobility targets, three of the intersections experience v/c's greater than 1.0. Under seasonally factored conditions, when the traffic demand exceeds the available capacity (v/c greater than 1.0) vehicles experience excessive delay and queuing. It is also expected that vehicles may require more than one signal cycle to pass through the intersection.

For many of these intersections, the southbound movements exceed available capacity, although most movements experience high levels of delay. The intersection of US 101 at East Harbor Street has approximately 460 vehicles attempting to turn left onto US 101 from East Harbor Street. The general rule of thumb would suggest dual left-turn lanes if the left-turning volume exceeds 300 vehicles per hour⁶; however, there is only one receiving lane on US 101 to accommodate northbound traffic. Although the number of northbound vehicles is slightly greater than the southbound volume during the peak hour, the southbound through movement exceeds capacity because it has a shorter green light due to the northbound protected left-turn.

⁶ Transportation Research Board (TRB). Highway Capacity Manual 2000. Washington, DC: TRB, National Research Council (NRC), 2000.

US 101 at Neptune Drive does not exceed capacity, however it does exceed ODOT's mobility target v/c of 0.80. This intersection provides the most direct access to the Fred Meyer driveways. This intersection has constraints similar to the intersection of US 101 at East Harbor Street, however the volumes are generally lower and the number of vehicles turning left onto US 101 is significantly lower.

For vehicles traveling south on US 101, US 101 at Marlin Drive is the first intersection providing access east of the highway. During the peak hour of the peak season, the volume just exceeds capacity. The southbound shared through-right movement has the highest volumes.

US 101 at Ensign Lane also exceeds capacity during the peak hour of the peak season. This intersection experiences the highest volume of traffic, which can be attributed to the large box stores on either side of US 101 (The Home Depot and Costco). The left-turning movements on all four approaches are failing while the through movements appear to operate well within acceptable levels. The allowable green time for the protected lefts is minimal for the amount of volume trying to get through the intersection; timing adjustments could potentially alleviate some delay for these movements, although it would likely be at the expense of the through movements.

The signal timing for the existing conditions analysis was collected from the most recent signal timing worksheets provided by ODOT; in order to most accurately reflect current conditions, timing was not optimized for analysis.

		Major Approach		Minor A	pproach	Mobility
	Intersection	V/C ^{1,2}	LOS ²	V/C ^{1,2}	LOS ²	Target ^{3,4}
Uns	ignalized Intersections					
1.	Pacific Dr at Ridge Rd/Lake Dr	0.16	А	0.14	А	v/c <=0.85, LOS E
2.	Pacific Dr at Iredale St	0.01	А	0.04	В	v/c <=0.90, LOS E
3.	OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street	0.05	A	0.10	В	v/c <=0.90, LOS E
4.	OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	0.74	D	0.81	D	v/c <=0.85, LOS E
5.	Warrenton-Astoria Hwy at SE Galena Ave	0.01	А	0.03	С	v/c <=0.90, LOS E
6.	E Harbor St at Marlin Dr	0.02	А	0.78	F	0.90 / 0.95
7.	E Harbor St at SE Neptune Dr	0.10	A	0.48	D	v/c <=0.90, LOS E
8.	E Harbor St at Young's Bay Plaza Access	0.08	A	0.55	D	v/c <=0.90, LOS E
10.	SW 2nd St/SW Gardenia Ave	0.07	А	0.01	A	v/c <=0.90, LOS E
11.	OR 104/S Main Ave at SW 2nd St	0.04	A	0.49	D	v/c <=0.90, LOS E
14.	NW Ridge Rd at SW 9th St	0.02	А	0.13	A	v/c <=0.90, LOS E
15.	SW 9th St at OR 104/Ft Stevens Hwy	0.06	А	0.22	С	v/c <=0.90, LOS E
16.	OR 104S/Ft Stevens Hwy Spur at US 101	0.03	В	0.02	С	0.80 / 0.90
17.	US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US 101Bus/Marlin Dr	0.01	A	0.20	В	0.90 / 0.95
18.	Delaura Beach Ln at Ridge Rd	0.02	A	0.03	А	v/c <=0.90, LOS E
19.	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave	0.12	A	0.47	С	0.95/0.90
20.	SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	0.02	A	0.12	В	v/c <=0.90, LOS E
22.	SE Ensign Ln at SE 19th St	0.01	А	0.18	В	v/c <=0.90, LOS E
23.	SE Ensign Ln at US 101Bus/Warrenton- Astoria Hwy/Ft Stevens Hwy Spur	0.01	A	0.22	В	v/c <=0.90, LOS E
24.	US 101 at SE Dolphin Ave	0.05	А	0.47	E	v/c <=0.80, LOS E
Sign	alized Intersections					
9.	E Harbor St at US 101 (signalized)	Ove	erall	1.05	D	0.80
12.	US 101 at SE Neptune Dr (signalized)	Ove	erall	0.88	С	0.80
13.	US 101 at Marlin Dr (signalized)	Ove	erall	1.02	E	0.80
21.	SE Ensign Ln at US 101	Ove	erall	1.03	F	0.80

Table 6. Existing (Year 2015) PM Peak Hour Traffic Operations Analysis Results

Acronyms: EB = eastbound; WB = westbound; NB = northbound; and SB = southbound. L = left; T = through; and R = right.

SHADED cells indicate the movement fails to meet applicable mobility target

Notes:

1. At intersections the results are reported for the worst operating movements on major and minor approaches that must stop or yield the right of travel to other traffic flows.

2. The v/c ratios and LOS are based on the results of the macrosimulation analysis using Synchro, which cannot account for the influence of adjacent intersection operations.

3. Mobility target is reported for the critical movement.

4. LOS mobility targets are not applied to State facilities.

Source: David Evans and Associates, Inc.

Warrenton TSP

Figure 7 Existing Conditions (2015)

PM Peak Hour (4:00 - 5:00 PM) **Traffic Operations**

Legend

Allowable Movement

- ## V/C Ratio
- () Level Of Service

Signalized Intersection

Study Area Intersection

Astoria Regional Airport

Roadway Safety Analysis

A safety analysis was conducted to determine whether any significant, documented safety issues exist within the management area and to inform future measures or general strategies for improving overall safety. This analysis includes a review of crash records, crash rates, and ODOT Safety Priority Index System (SPIS) data.

Crash History

The crash analysis included a review of crash history data supplied by the ODOT Crash Analysis and Reporting Unit for the period between January 1, 2010, and December 31, 2014, which were the five most recent full years for which crash data were available at the time of the analysis. The city-wide data is summarized in Figure 8 and breakdown of crashes at study area intersections is presented in Table 7 (Page 27). Detailed crash reports may be found in Appendix E.

Within the entire City of Warrenton, there were 346 crashes during the five-year analysis period. A breakdown of the collision types and crashes by year is presented in the charts below.

A more detailed analysis was completed for the study area intersections. There were 173 crashes reported at project intersections during the five-year analysis period. The two intersections with the highest number of crashes were East Harbor Street at US 101 (38 crashes and a SPIS site) and US 101 at Marlin Drive (45 crashes). Of the reported crashes, 88 resulted in minor injury(s), 84 resulted in property damage only, and one resulted in a fatality or serious injury. While none of the crashes were bicycle related, two crashes involved pedestrians. The highest proportions of crashes were rear-end collisions. Three of the crashes involved alcohol, while nine involved speeding.

CITY OF WARRENTON | Transportation System Plan

Data Sources:

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015. ODOT 2010-1014.

Figure 8 City of Warrenton Crash Locations (Years 2010 - 2014)

Network Screening

The Highway Safety Manual (HSM) Part B describes the critical crash rate method as a means of identifying locations that warrant further investigation. The critical crash rate is based upon average crash rates at comparable sites, traffic volume, and a confidence interval. Locations where the calculated crash rate exceeds the critical crash rate should be reviewed more closely to assess crash patterns. HSM Part B calculations are available in Appendix F.

Based on critical crash rates determined by the HSM Part B Network Screening methodology, two intersections had observed crash rates exceeding the calculated critical crash rate: Warrenton-Astoria Hwy at SE Galena Avenue and OR 104/S Main Avenue at SW 2nd Street. Nine intersections exceed statewide 90th percentile urban crash rates: Pacific Drive at Iredale Street, Warrenton-Astoria Hwy at SE Galena Avenue, East Harbor Street at US 101, OR 104/S Main Avenue at SW 2nd Street ,US 101 at Neptune Drive, US 101 at Marlin Drive, NW Ridge Road at SW 9th Street, US 101Business/Warrenton-Astoria Highway/Ft. Stevens Highway Spur at US 101Bus/Marlin Drive and Delaura Beach Lane at Ridge Road. These intersections account for 131 of the 173 crashes recorded at study area intersections within the five-year analysis period. Further detail about these locations is summarized below.

Warrenton-Astoria Hwy at SE Galena Avenue had a crash rate of 0.30 crashes/MEV. There were six crashes over the five-year data period. The majority of these collisions were rear end.

OR 104/S Main Ave at SW 2nd Street had a crash rate of 0.30 crashes/MEV and a total of eight crashes, the majority of which occurred as a result of turning vehicles (5). There were no pedestrian and bicycles involved in collisions at this intersection.

Pacific Drive at Iredale Street had a crash rate of 0.44 crashes/MEV. There were two crashes over the fiveyear data period. One crash was not specific to a collision type and the other was parked. The crash rate is high because the volumes are relative low at this location.

East Harbor Street at US 101 had 38 collisions during the five-year data period; the second highest crash location in the study area with a crash rate of 0.86 crashes/MEV. The majority of these crashes were rear end collisions (33). Rear-end collisions commonly occur at signalized intersections because so many vehicles are required to stop with signalized traffic control. The one pedestrian-related collision was due to the pedestrian making an illegal crossing.

US 101 at Neptune Drive had 27 crashes during the five-year data period with a crash rate of 0.76 crashes/MEV. The majority of these crashes were rear end collisions (20), likely caused by the congestion and the traffic signal. The one pedestrian-related collision was due to the pedestrian making an illegal crossing.

US 101 at Marlin Drive had the highest number of crashes in the study area with 45 crashes during the fiveyear study period. The crash rate of 1.15 crashes/MEV was also the highest. Approximately half of the crashes were rear-end collisions, likely due to the traffic signal and congestion. Angle and turning collisions make up the majority of the remaining crashes. Many of the angle collisions were due to driver error (inattention, physically ill, slowing down). Turning collisions at this location were likely due to vehicles attempting to make the green light and hitting an oncoming vehicle. **NW Ridge Road at SW 9th Street** had two crashes during the five-year data period with a crash rate of 0.47 crashes/MEV. One crash was a fixed-object collision and the other was turning related. The crash rate is high because the volumes are relative low at this location.

US 101Business/Warrenton-Astoria Highway/Ft. Stevens Highway Spur at US 101Bus/Marlin Drive had two crashes during the five-year data period with a crash rate of 0.33 crashes/MEV. One crash was a fixed-object collision and the other was turning related. The crash rate is high because the volumes are relative low at this location

Delaura Beach Lane at Ridge Road had one crash during the five-year data period with a crash rate of 0.33 crashes/MEV. The one crash was turning related. The crash rate is high because the volumes are the second lowest of all the study intersections.

One intersection not flagged for its crash rate but still significant was the intersection of US 101 at Ensign Lane. There were 29 crashes during the five-year data period with a crash rate of 0.63 crashes/MEV. The majority of these crashes were turning collisions (14) that occurred before the intersection was signalized, likely caused by side street traffic failing to yield right-of-way when turning onto US 101. The number of turning collisions dropped dramatically after the installation of the traffic signal.

This location was the only recorded fatality in the study area. The fatality resulted from a head-on collision where a vehicle crossed the center lane. This collision involved three vehicles, and five people. A driver and passenger in one vehicle were killed, the driver and passenger in the vehicle that crossed the center lane sustained serious injuries and the third vehicle was property damage only. Although this crash is attributed to an intersection, the cause (head-on) and mile point (8.00) implies it more likely occurred along the segment of US 101 north of the intersection.

Table 7. Crash History at Study Area Intersections

		Collision Type											Severity ¹			ate ² Ith		ر ق
Location	Rear End	Fixed Object	Angle	Backing	Turning	Sideswipe	Head On	Non-Collision	Parked	Bicycle/ Pedestrian	Miscellaneous	Total	Fatal & Serious Injury	Minor Injury	Property Damage Only	Critical Crash R (per MEV)	Statewide 90 Percentile Cra Rate (Rural)	Observed Cra Rate (per ME
1. Pacific Dr at Ridge Rd/Lake Dr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.52	0.41	0.00
2. Pacific Dr at Iredale St	0	0	0	0	0	0	0	0	1	0	1	2	0	0	2	0.52	0.41	0.44
3. OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street	2	0	1	0	0	0	0	0	0	0	0	3	0	2	1	0.36	0.41	0.27
4. OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	1	0	2	0	0	0	0	0	0	0	0	3	0	1	2	0.28	0.41	0.13
5. Warrenton-Astoria Hwy at SE Galena Ave	4	1	0	0	0	0	0	0	0	0	1	6	0	3	3	0.29	0.29	0.30
6. E Harbor St at Marlin Dr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.29	0.29	0.00
7. E Harbor St at SE Neptune Dr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.30	0.29	0.00
8. E Harbor St at Young's Bay Plaza Access	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.30	0.41	0.00
9. E Harbor St at US 101 (signalized)	33	1	0	0	1	2	0	0	0	1	0	38	0	23	15	4	0.51	0.86
10. SW 2nd St/SW Gardenia Ave	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.04	0.41	0.00
11. OR 104/S Main Ave at SW 2nd St	0	1	2	0	5	0	0	0	0	0	0	8	0	3	5	0.32	0.41	0.55
12. US 101 at SE Neptune Dr (signalized)	20	0	1	0	4	1	0	0	0	0	1	27	0	12	15	4	0.51	0.76
13. US 101 at Marlin Dr (signalized)	23	4	9	0	8	0	0	0	0	0	1	45	0	20	25	4	0.86	1.15
14. NW Ridge Rd at SW 9th St	0	1	0	0	1	0	0	0	0	0	0	2	0	1	1	0.53	0.29	0.47
15. SW 9th St at OR 104/Ft Stevens Hwy	1	1	0	0	1	0	0	0	0	0	0	3	0	1	2	0.34	0.41	0.24
16. OR 104S/Ft Stevens Hwy Spur at US 101	1	1	0	0	0	0	0	0	0	0	0	2	0	1	1	0.25	0.41	0.06
17. US 101Bus/Warrenton-Astoria Hwy/ Ft Stevens Hwy Spur at US 101Bus/Marlin Dr	0	1	0	0	1	0	0	0	0	0	0	2	0	2	0	0.45	0.29	0.33
18. Delaura Beach Ln at Ridge Rd	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0.63	0.29	0.33
19. OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave	0	0	0	0	1	0	0	0	0	0	0	1	0	0	1	0.34	0.29	0.09
20. SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0.42	0.29	0.14
21. SE Ensign Ln at US 101 (signalized)	11	1	0	0	14	2	1	0	0	0	0	29	1	17	11	4	0.86	0.63
22. SE Ensign Ln at SE 19th St	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.38	0.41	0.00
23. SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.36	0.29	0.00
24. US 101 at SE Dolphin Ave	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.26	0.41	0.00

Notes: Bold and Italicized indicates crash rate over statewide 90th percentile crash rate, shaded indicates crash rate over reference population critical crash rate.

1. There were no fatal collisions recorded in the most recent 5-years of available crash data

2. Critical crash rate (per Million Entering Vehicles) calculated based on 95% confidence level

3. Crash rates could only be calculated for intersections where traffic count data has been collected.

4. Not enough of intersection type to perform reference population critical crash rates.

Excess Proportion of Specific Crash Types

The Excess Proportion of Specific Crash Types method quantifies the extent to which a specific crash type (the target crash type) is overrepresented at an analysis site, compared to the average representation within a reference population.⁷ Excess proportion of specific crash types analysis does not consider the overall frequency or rate of crashes, instead it considers only the types of crashes observed. ODOT provides a limited spreadsheet tool that implements excess proportion of specific crash types; the outputs from this spreadsheet are available in Appendix E.

For the Warrenton TSP study area, two intersections have greater than a 90 percent probability of a greater than expected proportion of either rear-end or turning collisions. The results are summarized below:

Intersection	Crash Type	Probability ¹	Excess Proportion ²
US 101 at Neptune Dr	Rear End	0.96	0.14
SE Ensign Ln at US 101	Turning	0.96	0.21

Table 8. Excess Proportion Crash Locations

Note: Full results in Appendix E

1. Excess Proportion analysis assumed greater than 90% minimum probability

2. Excess Proportioin analysis assumed 10% minimum excess proportion

This means that there is a 96% chance that the long term expected proportion of rear end crashes at US 101 at Neptune Drive will be greater than the long term expected proportion of rear end crashes at three-legged signalized intersections when compared to the rest of the three-legged signalized intersections in the study area. There is a 96% chance that the long term expected proportion of turning crashes at US 101 at SE Ensign Lane will be greater than the long term expected proportion of rear end crashes at four-legged signalized intersections when compared to the rest of the four-legged signalized intersections in the study area.

The great the excess proportion value, the greater likelihood that the site will benefit from a countermeasure targeted at the collision type under consideration.⁸ Both of the flagged interesctions in Table 8 are signalized intersections. The alternatives analysis should consider potential safety improvements that would provide countermeasures to turning and rear end collisions at the intersections listed.

Safety Priority Index System (SPIS)

The SPIS is a method used in Oregon to identify safety problem areas along state highways. Highways are evaluated in approximately one-tenth mile increments (often grouped into larger segments). Each year these segments are ranked by assigning a SPIS score based on the frequency and severity crashes observed, while taking traffic volume into account. When a segment is ranked in the top 10% of the index, a crash analysis is typically warranted and corrective

⁷ ODOT Analysis Procedure Manual Version 2, Section 4.3.5, p. 4-76, 2016.

⁸ Highway Safety Manual 4-58

actions are considered. These segments can be found in Table 9. There are two segments along US 101 within the study area that are identified as being in the top 10% of the most recent SPIS rankings.

Highway	Beginning Mile Point	End Mile Point	ADT	Total Crashes	Fatal & Injury A ¹ Crashes	City/ County	Connectio						
US 101	6.48	6.58	13,500	20	0	Warrenton	-						
US 101	7.96	8.09	13,600	16	1	Warrenton	SE Ensign Ln						

Table 9. Top 10% ODOT SPIS Site Summary

Note:

1. Incapacitating or serious Injury

Source: ODOT SPIS Report 2015 (2012-2014 Data)

The first segment, between mile point 6.48 and 6.58 on US 101 includes the signalized intersection with East Harbor Street and an unsignalized driveway that provides access to some commercial businesses. An overwhelming majority (85 percent) of the 20 crashes at this location were rear-end collisions caused by following too closely or driver inattention. Both the traffic signal and driveway could be contributing to the high number of crashes along this section of US 101, however the prevalence of rear-end collisions would imply that the traffic signal at East Harbor Street is the likely cause.

The other segment, between mile point 7.96 and 8.09 on US 101 includes the signalized intersection with Ensign Lane, which provides access to large chain stores (The Home Depot, Costco, TJ Maxx and others). There are no other access points within this segment. As previously mentioned, this intersection became signalized in the midst of the analysis period. The majority of the crashes in this segment were caused by following too closely and failing to yield the right-of-way. As summarized in the Network Screening section, the one fatal collision was a result of a headon collision where the driver crossed the centerline into oncoming traffic.

ODOT is finalizing a project list of 2017-2021 All Roads Transportation Safety (ARTS) projects. One such potential ARTS project will seek to improve safety along US 101 at the signalized intersections in both SPIS locations. This project allows for signal hardware upgrades and includes: reflectorized backplanes (making the signals more visible) and countdown pedestrian heads for all signals, and dilemma zone protection at US 101 and East Harbor Street. Dilemma zone protection would likely consisted of warning signs equipped with one or more vellow flashing beacons that instruct drivers of the upcoming traffic signal. At the time this memorandum was written, the project had been shelved as the ARTS program pursues a separate funding source.

Connection

Pedestrian and Bicycle System Inventory

This section describes the existing pedestrian and bicycle facilities within the city of Warrenton. Pedestrian facilities include sidewalks, multi-use paths, trails and crosswalks that help to facilitate safe and efficient pedestrian travel. Bicycle facilities include bicycle lanes, multi-use paths and trails along regionally significant corridors.

Trail System

Several multi-use paths exist within Warrenton. The Warrenton Waterfront trail, roughly five miles in length, runs from SE 3rd Street at its southern terminus to NW 13th Street as its northern terminus. The trail is a mix of on-road and rail-trail bridges. Lagoon trail meets up with the Warrenton Waterfront Trail, and connects to NE Skipanon Drive. The Skipanon River Loop Trail performs a loop that travels along the east bank and west bank of the Skipanon River. In addition to paved multi-use paths, there is an extensive "soft" path trail system throughout Warrenton, generally providing access to the park system (both State and local). Soft trails may be "unofficial" (abandoned railroad bed) or made of softer surface such as bark dust or woodchips.

Soft Trails:

- Fort to Sea Trail
- South Slough Trail
- Netul River Trail
- Jetty Trail
- Kwis Kwis Loop
- Airport Dike Trail
- Bayfront Dike Trail
- Skipanon River Loop Trail
- Warrenton Waterfront Trail
- Lagoon Spur Trail
- Dump Station Trail

- Jetty Trail
- Isaac Stevens Trail
- Trestle Bay Trail
- Kestrel Dune Trail
- DeLaura Dune Trail
- Sunset Trail
- Coffenbury Lake Trail
- Bettery Russel South
- Russel Dune Trail
- East Spur Trail

Pedestrian Facilities

The bicycle and pedestrian systems within Warrenton mainly follow the local arterials and State Highways; while most local streets lack facilities. See Figure 9 for the complete list of bicycle and pedestrian facilities. Key pedestrian volumes occur at the following study intersections (see Figure 1) Fort Stevens Highway and Northeast Skipanon Drive (#4), South Main Avenue and Southwest 2nd Avenue (#11), and Pacific Drive and Ridge Road (#1). While the highest concentration of sidewalks can be found in downtown Warrenton, the majority of the facilities are along roadway shoulders where pedestrians must share the shoulder with cyclists and parked cars. Locations of sidewalks along arterial and collector streets can be found in Table 10, while the quality of the segment can be found in **Error! Reference source not found.** (page 35.)

ESRI, ArcGIS Online, World Topography Map. 2015. ODOT, City of Warrenton, Clatsop County, Oregon. 2015.

Figure 9

Bicycle/Pedestrian Inventory

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM5\Fig_09_WarrentonTSP_BikePed_Inventory.mxd

Roadway Name	Sidewalks	Bike Lanes	Street Lighting	Shoulder	On-Street Parking
US 101	Yes ¹	Yes ¹	At intersections	Yes	No
OR 104 (Ft. Stevens Hwy)	Yes ²	Yes ²	Minimal/Some intersections	Yes ²	Yes ²
US 101B (Warrenton-Astoria Hwy)	Yes ³	No	At intersections	Yes	No
E Harbor St	No	No	Minimal/some intersections	Yes	Yes
Ridge Rd	No	No	Some intersections	Yes	Yes
SE Ensign Ln	Yes ³	Yes	No	Yes	No
OR 104 S	No	Yes	No	Yes	No
Marlin Ave	No	Yes	Yes	Yes	Yes
SW 18 th St	No	Yes	Minimal	Yes	Yes
SE 12 th Pl	No	No	Yes	No	No

Table 10. Inventory of Bicycle and Pedestrian Facilities on Arterials and Collectors

Notes:

1. Sidewalk and bicycle lanes exist in limited locations on the northwest side of US 101

2. Sidewalks and bicycles lanes are inconsistent on OR 104

3. Sidewalk is discontinuous

In a review of aerial maps, more detailed bicycle and pedestrian information was determined. There is a of sidewalk approximately 1,000 feet long on the northwest side of US 101 on either side of the intersection at US 101 and SE Ensign Lane, as well as a roughly 600 foot stretch heading south along the eastern side of US 101 from SE Ensign Lane.

Along OR 104, there is no sidewalk present from Enterprise Street to nearly North Main Avenue, where sidewalk starts and exists on either side of North Main Avenue.

On Warrenton-Astoria Highway, there is no sidewalk present on the south side of the roadway from 160 feet east of SE Anchor Avenue to SE Galena Avenue. Sidewalk does not exist from SE/NE King Avenue to SE 2nd Street, or on the east side of the roadway approximately 160 feet north of SE 11th Place to the City limits. Sidewalk does exist on the north side of Warrenton-Astoria Highway between NE Heron Avenue and Ensign Road.

On SE Ensign Lane, sidewalk fully present on the north side, and partially on the south side, of the roadway between OR 104S and US 101, on the north side of the roadway between US 101 and SE 19th Street and on both sides of the roadway from SE 19th Street to US 101B.

A qualitative assessment of the pedestrian facilities was also performed. Most pedestrian facilities can be rated "poor" when considering what type of system is currently in place in Warrenton. This means that facilities either are not in place or a pedestrian is required to travel along a roadway shoulder against vehicles at higher speeds. Figure 10 and Table 11 (Page 36) summarize the qualitative assessment for pedestrian facilities.

ESRI, ArcGIS Online, World Topography Map. 2015. ODOT, Clatsop County, Oregon. 2015.

0 4,500 9,000 Feet

Figure 10

Pedestrian Qualitative Assessment

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM5\Fig_10_WarrentonTSP_Ped_Quality.mxd

Bicycle Facilities

Bicycle Level of Traffic Stress

The bicycle operations within the study area were analyzed using ODOT's methodology for Bicycle Level of Traffic Stress (LTS) for roadway segments. LTS measures the effect of traffic-based stress on bicycles by quantifying the perceived comfort levels a bicyclist experiences on a given facility. Some characteristics used to determine LTS are presence of a bicycle lane, width of facilities, posted speed, adjacent parking facilities and land use (rural or urban).

LTS can be classified as Level 1, 2, 3 or 4, where Level 1 is low stress and Level 4 is high stress.

In addition to reviewing LTS, a qualitative assessment of the bicycle facilities was performed. Most bicycle facilities can be rated "fair" when considering what type of system is currently in place in Warrenton. This means that though the facilities may not be ideal; there is a route for the experienced rider to use.

Along US 101, bicycle facilities consist of wide outside lanes where there exists enough shoulder for an automobile to comfortably pass a cyclist. Along Fort Stevens Highway OR 104, between US 101 and SW 9th Street, there exist new constructed bikeways as part of a OTC STIP project. The majority of the study area roadways were measured at a LTS 4, due to lack of facilities/buffers and high vehicular speeds. There were no roadways classified as LTS 1. Figure 11 displays the LTS for each collector/arterial within the City of Warrenton, and Table 11 lists qualitative facility assessment (good, fair, poor) for bicycle and pedestrian facilities along the study area arterials and collectors. Background information for how the LTS was calculated is available in Appendix G.

Document Path: P.IDIDKSA0000004/0600INFOIGSWapsiWarrentonTSP - TM5iFig_11_WarrentonTSP_Bike_LevelOfStress.mxo

Bicycle

Level of Stress

Existing Conditions

Table 11. Bicycle and Pedestrian Qualitative Assessment

	Мос	de
Segment (Intersection-Intersection)	Pedestrian	Bicycle
Pacific Dr between Ridge Rd & Iredale St (1-2)	Poor	Fair
Ridge Rd between Pacific Dr and SW 9 th St (1-14)	Poor	Fair
Pacific Dr between Iredale St and 1 st St (2-3)	Poor	Fair
Main Ave between NW 1 st St and OR 104 (3-4)	Poor	Fair
OR 104 between Harbor Dr and SW 2 nd St (4-15)	Good	Poor
Harbor Dr between OR 104 and SE Galena Ave (4-5)	Fair	Fair
Harbor Dr between SE Galena Ave and Marlin Dr (5-6)	Poor	Fair
SE Galena/7 th St between Harbor Dr and OR 104 (5-15)	Poor	Poor
Harbor Dr between Marlin Dr and SE Neptune Dr (6-7)	Poor	Fair
Marlin Dr between Harbor Dr and Us 101 (6-13)	Fair	Fair
Harbor Dr between SE Neptune Dr and US 101 (7-9)	Fair	Fair
SE Neptune Dr between Harbor Dr and US 101 (7-12)	Good	Poor
US 101 between Harbor Dr and Marlin Ave (9-13)	Poor	Fair
SW 2 nd St between SW Gardenia Ave and OR 104 (10-11)	Fair	Fair
Marlin Dr between US 101 and US 101B (13-17)	Poor	Fair
SW 9 th St between NW Ridge Rd. and OR 104 (14-15)	Poor	Fair
NW Ridge Rd. between SW 9 th St and SW 18 th St (14-18)	Poor	Fair
OR 104 between SW 9 th St and OR 104S (15-19)	Poor	Fair
US 101 Bus between US 101 and Marlin Dr (16-17)	Poor	Fair
OR 104S between OR 104 and US 101 (16-19)	Poor	Fair
US 101 between OR 104S and SE Ensign Ln (16-21)	Poor	Fair
US 101 Bus between Marlin Dr and SE Ensign Ln (17-23)	Poor	Fair
SW 18 th St between Ridge road and OR 104 (18-20)	Poor	Fair
OR 104 between OR 104S and SW 18 th St (19-20)	Poor	Fair
SE Ensign Ln between OR 104 and 19 th St (21-22)	Good	Good
SE Ensign Ln between 19 th St and US 101 Business (22-23)	Good	Excellent
US 101 between SE Ensign St and SE Dolphin Ave (21-24)	Poor	Fair
SE Ensign Ln between 19 th St and US 101 Business (22-23)	Good	Good

Table 12. Study Intersection Ramp Inventory

		Ramp L	ocation		
	NW	NE	SW	SE	Marked Crossing
Intersection	Corner	Corner	Corner	Corner	
1. Pacific Dr at Ridge Rd/Lake Dr	No	No	No	No	No approaches
2. Pacific Dr at Iredale St	No	No	No	No	No approaches
3. OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street	No	No	No	No	No approaches
4. OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	Yes	Yes	Yes	Yes	NW-SW, SW-SE, SE-NE
5. Warrenton-Astoria Hwy at SE Galena Ave	Yes	Yes	No	No	No approaches
6. E Harbor St at Marlin Dr	No	No	No	No	No approaches
7. E Harbor St at SE Neptune Dr	No	No	Yes	No	No approaches
8. E Harbor St at Young's Bay Plaza Access	No	No	No	No	No approaches
9. E Harbor St at US 101 (signalized)	Yes*	Yes*	Yes*	Yes*	NW-SW, SW-SE
10. SW 2nd St/SW Gardenia Ave	No	No	No	-	No approaches
11. OR 104/S Main Ave at SW 2nd St	Yes	Yes	Yes	Yes	All approaches
12. US 101 at SE Neptune Dr (signalized)	No	No	No	No	All approaches
13. US 101 at Marlin Dr (signalized)	Yes	Yes	Yes	Yes	All approaches
14. NW Ridge Rd at SW 9th St	No	No	-	-	No approaches
15. SW 9th St at OR 104/Ft Stevens Hwy	Yes	No	No	No	NW-NE
16. OR 104S/Ft Stevens Hwy Spur at US 101	No	No	No	No	No approaches
17. US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US 101Bus/Marlin Dr	No	No	No	No	No approaches
18. Delaura Beach Ln at Ridge Rd	-	-	-	-	No approaches
19. OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave	-	No	-	Yes	No approaches
20. SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	No	No	No	-	No approaches
21. SE Ensign Ln at US 101	Yes	Yes	Yes	Yes	All approaches
22. SE Ensign Ln at SE 19th St	Yes	Yes	No	Yes	NW-SW, NW-NE
23. SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur	Yes	No	-	-	No approaches
24. US 101 at SE Dolphin Ave	No	No	No	No	No approaches
* Curb ramp built, but no connecting sidewalk.					

Bicycle and Pedestrian Deficiencies

In reviewing the current network of bicycle and pedestrian facilities throughout Warrenton, it is apparent the system is only partially connected. Along US 101, bicycle facilities consist of wide outside lanes where there exists enough shoulder for an automobile to comfortably pass a cyclist. Along Fort Stevens Highway OR 104, between US 101 and SW 9th Street, there exist new constructed bikeways as part of a OTC STIP project. The system is disjointed and could benefit from connecting the facilities that do exist.

Public Transportation Inventory

Local Transit Service

Local, public transit services are provided by Sunset Empire Transportation District (SETD). SETD provides transit services in Clatsop County and buses are equipped with bicycle racks and either a ramp or a lift to allow wheelchair access. Their services include:

- Fixed-Route Service routes operate seven days a week within the five incorporated cities (Astoria, Warrenton, Gearhart, Seaside and Cannon Beach) and see roughly 3,500 rides per week.
- RIDEASSIST paratransit service provided to aid persons with disabilities that cannot access the fixed route system.
- RIDECARE assisted travel for medical purposes.

Fixed-Route Service – SETD

The following routes serve Warrenton:

- Route 10: Connects Astoria, Hammond, and Warrenton, and only operates Monday thru Friday. Headways are 60 minutes between the hours of 6:00 am and 7:00 pm. Key destinations along the route include Astoria Transit Center, Clatsop Community College, Emerald Heights, and the Department of Motor Vehicles.
- Route 15: Connects the Transit Center in Warrenton with the Transit Center in Astoria, and passes through Hammond. The route operates Monday through Friday between roughly 6:00 am and 6:00 pm, with headways that fluctuate between 30 minutes and 190 minutes.
- Route 101: Operating Monday through Friday from 6:00 am to 8:00 pm, headways are roughly 60 minutes. This route connects Astoria, Warrenton, Gearhart, Seaside, and Cannon Beach.
- Pacific Connector: Connects Astoria, Warrenton, Gearhart, Seaside, Cannon Beach, and Tillamook County, with runs happening on weekends. Southbound buses have two trips in the morning, with roughly two hour spacing, and one trip in the afternoon. Northbound buses have three departures at approximately three-hour intervals.
- **Route 12 (Seasonal):** This route generally runs in the summer and stops at Port of Astoria, Fred Meyer and Costco.

RIDEASSIST – SETD

A paratransit service provided by the public transit agency to aid those who cannot access the fixed-route service. This service is curb to curb, wheelchair accessible, and operates Monday through Friday. Pick up and drop off times and locations can be arranged, and reservations should be made at least one day in advance.

Regional Transit Connections

NorthWest POINT

Provides passenger bus service between Astoria and Portland. Nine stops in total, of which include Warrenton, Cannon Beach, and Seaside. Bus service is operated by MTR Western in a public-private partnership to provide transit to the coastal region. There are two departures a day (morning and evening). The buses are wheelchair accessible, and are Wi-Fi enabled.

Pacific Transit

Route-fixed bus service provided by Pacific Transit that operates in Pacific County, Washington and the City of Astoria. Can transfer to SETD Routes 10, 15, or 101 in Astoria.

Transit Facilities

There are about 10 bus stops in Warrenton including stops Downtown on Main Street, Costco, Fred Meyer, KOA, Parkview Apartments and Hammond neighborhood. Of the bus stops, only a fraction offer benches and shelter and some lack sidewalks connections to the surrounding neighborhoods and businesses.

Rail Inventory

There are currently no active railroad lines in Warrenton, as all old lines have been removed. However, services provide connections to Astoria where rail does travel. Route-fixed bus service operated by SETD provides connections via routes 10, 15, or 101, and both Pacific Transit and NorthWest POINT provide bus service to Astoria.

Aviation Inventory

The Astoria Regional Airport, owned and operated by the Port of Astoria, is located within the Warrenton city limits/UGB and is home to the Coast Guard Air Station Astoria. The Regional Airport is 10 minutes from Astoria, 20 minutes from the City of Seaside, and 40 minutes from Cannon Beach. The Astoria Regional Airport Master Plan Update was completed in 2008, and provides a comprehensive evaluation and inventory of the airport. The airport has two runways, and includes passenger terminal facilities, US Coast Guard Facilities, hangers and aircraft storage, commercial aviation businesses, and a fuel storage facility. Nearly 82% of operations are attributed to general aviation operations. Many of which are single engine aircrafts.

Water (Marine) Transportation

While much of the coast is given over to residential waterfront, there are two main marinas within Warrenton. Hammond Marina is located in northwestern Warrenton and provides access and dock space for smaller private and commercial vessels, being able to handle recreational boats up to 50 feet long. It can be accessed by Iredale Street and Lake Drive. The Skipanon waterway provides water access to the Warrenton Marina as well as access to Hampton Lumber Mills and the Pacific Coast Seafoods site, as well as the east bank Skipanon Peninsula. The channel is 30 feet deep, and the mooring basin is 12 feet deep. Nygaard logging is also located along the northeastern shoreline, and vessels are able to access the lumberyard near Tansy Point. The only other feature along the shoreline is a 300-foot wharf located near Point Adams Packing. Vessels too large to use these two waterways can be referred to the nearby Port of Astoria.

Pipeline Transportation

Warrenton is served by a Northwest Natural Gas pipeline that runs along the Columbia River from US 101 toward Hammond. No other significant pipelines exist within Warrenton.

Intelligent Transportation Systems (ITS)

Two pieces of ITS equipment exist along US 101: a Highway Advisory Radio (HAR) Beacon Sign and a Variable Message Sign (VMS). The HAR Beacon is located just north of Dolphin Avenue and alerts northbound traffic to upcoming congestion with flashing lights. The VMS is just over a mile south of Warrenton. Although it is outside City Limits, it provides alerts to northbound travelers on US 101.

Current Funding Summary

		2011-12	2012-13	2013-14	2014-15	2015-16	
	State Tax Street Funds	\$1,499,595	\$1,510,465	\$1,719,455	\$2,013,543	\$1,741,391	
	Streets SDC Fund	N/A	\$126,985	\$167,559	\$71,698	\$550 , 650	

The City of Warrenton currently has the following transportation funding mechanisms:

The State Tax Street Funds are provided by the Oregon Department of Transportation, the State Highway Trust Fund, and the City 0.03 cent fuel tax. One percent of all gas tax receipts are set aside for bicycle lanes and pedestrian paths. The City fuel tax will net approximately \$288,000 in fiscal year 2015-16. The City fuel tax is used to pay for rebuilding and overlaying city streets, with the remaining balance going towards street maintenance, street repair, and street lighting.

The Streets SDC Fund may be used for transportation improvements "including but not limited to streets, sidewalks, bike paths, street lights, trees, mass public transportation, vehicle parking, and bridges."⁹

The proposed expenditures for 2015-16 include the following:

- Personnel Services \$75,643
- Materials and Services \$374,033
- Capital Outlay \$1,488,976
- Contingency \$89,535

The total expected funding for 2015-16 is \$2,292,041 and the total expected expenditures are \$2,026,187, leaving an expected balance of \$265,854.

⁹ City of Warrenton. Draft Report for System Development Charges. Prepared by FCS Group. December, 2011.

MEMORANDUM #5 - Appendix

Appendix A Land Use and Natural Resources Appendix B Traffic Methodology Appendix C Volume Development Appendix D Synchro Worksheets Appendix E ODOT Crash Reports Appendix F Critical Crash Rate Appendix G Bicycle Level of Traffic Stress

Appendix A

Land Use, Natural Resources and Transportation Disadvantaged Populatioins

Existing Conditional Memorandum: Land Use, Natural Resources and Transportation Disadvantaged Populatioins

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Comprehensive Plan Designations

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP\Fig_05_WarrentonTSP_CompPlan.mxd

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Environmental Justice: Households per Square Mile

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM5\TitleVI_EJ\Fig_03_WarrentonTSP_EJ_HouseholdSqMi.mxd

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Environmental Justice: Seniors per Square Mile

 $Document\ Path:\ P:\ D'D'DKSA0000004\ 0600\ INFO\ GS\ Maps\ Warrenton\ TSP-TMS\ Title\ VI_EJ\ Fig_04_Warrenton\ TSP_EJ_Seniors\ SqMi.mxd$

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Environmental Justice: Percent Poverty

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM5\TitleVI_EJ\Fig_05_WarrentonTSP_EJ_PercentPoverty.mxd

Appendix **B**

Traffic Methodology
METHODOLOGY MEMORANDUM

SUBJECT:	Warrenton Transportation System Plan	
	Angela Rogge, PE, David Evans and Associates, Inc.	
FROM:	Shelly Alexander, PE, David Evans and Associates, Inc.	
TO:	Warrenton TSP Project Management Team	
DATE:	July 5, 2016	

This memorandum summarizes the approach for collection and evaluation of information that the City of Warrenton Transportation System Plan (TSP) will use for traffic analysis purposes. The study area includes the City of Warrenton within the City Limits and the Urban Growth Boundary (UGB). This area is located on the south side of the mouth of the Columbia River in Clatsop County. The City covers approximately 17 square miles and is bisected by US 101.

Volume Development

Study Area Intersections

The TSP includes 24 intersections for analysis:

- 1. Pacific Dr at Willow St/Lake Dr
- 2. Pacific Dr at Iredale St
- 3. OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street
- 4. OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave
- 5. Warrenton-Astoria Hwy at SE Galena Ave
- 6. E Harbor St at Marlin Dr
- 7. E Harbor St at SE Neptune Dr
- 8. E Harbor St at Young's Bay Plaza Access
- 9. E Harbor St at US 101 (signalized)
- 10. SW 2nd St/SW Gardenia Ave
- 11. OR 104/S Main Ave at SW 2nd St
- 12. US 101 at SE Neptune Dr (signalized)
- 13. US 101 at Marlin Dr (signalized)

- 14. NW Ridge Rd at SW 9th St
- 15. SW 9th St at OR 104/Ft Stevens Hwy
- 16. OR 104S/Ft Stevens Hwy Spur at US 101
- 17. US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US 101Bus/Marlin Dr
- 18. Delaura Beach Ln at Ridge Rd
- OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave
- 20. SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy
- 21. SE Ensign Ln at US 101
- 22. SE Ensign Ln at SE 19th St
- 23. SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur
- 24. US 101 at SE Dolphin Ave

Traffic Data Collection

The transportation and traffic analysis will be based on existing year 2015 conditions for the design hour (30th highest) volumes.

The Consultant shall assemble manual classification counts as provided by ODOT (summarized in Table 1):

- 16-hour turning movement counts, including bicycles and pedestrians with 15 minute breakdowns between 7:00 AM to 10:00 AM and 4:00 PM to 7:00 PM **3 locations**
- 3-hour PM peak turning movement counts, including bicycles and pedestrians, with 15 minute break downs between 4:00 PM and 7:00 PM **19 locations**
- 4-hour PM peak turning movement counts near schools, including bicycles and pedestrians, with 15 minute breakdowns between 2:30 PM and 6:30 PM – 2 locations

ID	Count Location	Count Type	Duration	Date
1	Pacific Dr at Willow St/Lake Dr	Turning Movement	3 Hour	5/27/2015
2	Pacific Dr at Iredale St	Turning Movement	3 Hour	5/27/2015
3	OR 104/S Main Ave/Ft Stevens Hwy at NW 1st St	Turning Movement	3 Hour	5/27/2015
4	OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	Turning Movement	3 Hour	9/26/2013
5	Warrenton-Astoria Hwy at SE Galena Ave	Turning Movement	3 Hour	5/27/2015
6	E Harbor St at Marlin Dr	Turning Movement	3 Hour	5/27/2015
7	E Harbor St at SE Neptune Dr	Turning Movement	3 Hour	5/27/2015
8	E Harbor St at Young's Bay Plaza Access	Turning Movement	3 Hour	5/27/2015
9	E Harbor St at US 101 (signalized)	Turning Movement	16 Hour	5/28/2015
10	SW 2nd St/SW Gardenia Ave	Turning Movement	3 Hour	5/28/2015
11	OR 104/S Main Ave at SW 2nd St	Turning Movement	3 Hour	5/27/2015
12	US 101 at SE Neptune Dr (signalized)	Turning Movement	16 Hour	5/28/2015
13	US 101 at Marlin Dr (signalized)	Turning Movement	3 Hour	9/26/2013
14	NW Ridge Rd at SW 9th St	Turning Movement	3 Hour	5/27/2015
15	SW 9th St at OR 104/Ft Stevens Hwy	Turning Movement	4 Hour	5/27/2015
16	OR 104S/Ft Stevens Hwy Spur at US 101	Turning Movement	3 Hour	5/27/2015
17	US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at	Turning Movement	3 Hour	5/27/2015
	US 101Bus/Marlin Dr		0.100	0, 1, 1010
18	Delaura Beach Ln at Ridge Rd	Turning Movement	3 Hour	5/27/2015
19	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main	Turning Movement	3 Hour	9/26/2013
	Ave			
20	SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	Turning Movement	4 Hour	5/27/2015
21	SE Ensign Ln at US 101	Turning Movement	16 Hour	5/28/2015
22	SE Ensign Ln at SE 19th St	Turning Movement	3 Hour	5/27/2015
23	SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur	Turning Movement	16 Hour	10/21/2015
24	US 101 at SE Dolphin Ave	Turning Movement	3 Hour	5/27/2015

Table 1. Summary of Traffic Counts

Generally, the majority of the traffic counts were conducted in the year 2015. There are three intersections that were conducted of September, 2013 which will need to be grown to year 2015.

Design Hour (30th Highest) Volumes

Data for existing weekday counts will be reviewed to determine which hour is the highest traffic demand hour for the study area. Turning movements, peak hour factors, vehicle classification, and other data describing demand in the study area will be derived for this peak hour.

Inventory of Existing Facilities

The transportation system inventory is a city-wide inventory of the street network, bicycle and pedestrian facilities and transit facilities.

Traffic Volumes

Traffic volumes will be developed for two study periods: existing year 2015 and future year 2035.

Existing Volumes

The existing PM peak hour volumes will be determined from the existing weekday counts and adjusted to design hourly volumes following the methodologies outlined in the ODOT Transportation Planning and Analysis Unit's (TPAU) *Analysis Procedures Manual* (APM) *Volume 2*.

Peak Hour Selection

A single system peak hour will be used for analysis purposes. Traffic counts will be reviewed in 15minute intervals to determine the true peak hour for the entire study area. The final selection of a peak hour will be based on a simple majority of counts that have the same peak hour, with attention paid to Old Salem Road intersections and I-5 ramp terminals.

Adjustment to Baseline Analysis Year

The project base year is 2015 but three of the counts available were counted in 2013. The Future Volume Table is used to adjust the counts to the base year. The following intersections were counted on September 26, 2013:

- OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave
- US 101 at Marlin Dr
- OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave

Assuming linear growth in the future, the annual growth factor was calculated based on the 22year growth factor from ODOT's 2034 Future Volume Table. If more than one growth factor is applicable to an intersection, the factors were averaged and applied to all movements of the study intersection. Table 2 summarizes the growth factors for each of the three intersections.

Hwy No.	Description	2012	2034	2 Year Growth Factor
9	0.02 mile northeast of Warrenton-Astoria Highway, (US101 Bus.)	12800	14900	1.015
9	0.20 mile northeast of Fort Stevens Highway Spur and connection to Warrenton-Astoria Highway (US101 Bus.)	13800	16500	1.018
		US 101 at	Marlin Dr	1.016
104	0.10 mile north of Warrenton-Astoria Highway (US101 Bus.)	6300	6800	1.007
104	0.01 mile south of Warrenton-Astoria Highway (US101 Bus.)	6400	6800	1.006
105	0.04 mile east of Fort Stevens Highway	8800	9200	1.004
	OR 104/Ft Stevens Hwy at NE Skip	anon Dr/S	Main Ave	1.006
104	0.07 mile north of Fort Stevens Highway Spur	5300	6500	1.021
104	0.02 mile south of Fort Stevens Highway Spur	4500	5200	1.014
485	0.10 mile east of Fort Stevens Highway	3800	4200	1.010
	OR 104S/Ft. Stevens Spur at OR 104/Ft. Steve	ens Hwy/S	Main Ave	1.015

Table 2. Growth Factors (Year 2013 to Year 2015)

Seasonal Adjustment Factors

Since traffic counts were taken during various times of the year, data from varying months will need to be converted to peak month equivalents using calculated seasonal adjustment factors. TPAU has three methods for developing seasonal factors: On-Site ATR Method, ATR Characteristic Table Method, and ATR Seasonal Trend Table Method. To accommodate the varying road types within the study area, different methods were used to develop seasonal factors for US 101, Distric Highways and local streets.

There are no ATRs in the study area; the closest ATRs are to the north and south of Warrenton in the cities of Astoria and Gearhart, respectively. For local system traffic, the seasonal trend table will be applied to identify a seasonal adjustment for the commuter trend.

Seasonal factors will be calculated for the count months of May, September and October and applied to the existing count data. Traffic volumes will then be multiplied by their appropriate seasonal factor to determine the 30th highest hour volumes.

US 101/District Highways/Routes to Fort Stevens Campground

There are no ATR locations along US 101 in close proximity to the study area that have similar characteristics to US 101 through the study area. To develop seasonal factors appropriate for ramp volumes, both the ATR Characteristic Table Method and Seasonal Trend table were considered as viable methods. Based on the characteristics of US 101 through the study area and AADTs within 10% of the study area US 101 volumes, US 101 ATR 04-001 (Gearhart) was selected. Seasonal factors were also determined using the average of the Coastal Destination and Coastal Destination Route trends. A comparison of the ATR method factors and Seasonal Trend Table factors resulted in choosing the Seasonal Trend Table method due to a difference greater than 30% of the peak period. These factors will be applied to the majority (17) of the study area intersections.

District Highways Not Leading to Fort Stevens Campground

To develop seasonal factors for study area intersections on District Highways northwest and southeast of US 101 not leading to the Fort Stevens Campground, the Seasonal Trend Table was used for the summer trend. These factors will be applied to five study area intersections.

Local Traffic

The seasonal factors for traffic moving within the local street network was calculated based on the count date using the ATR Seasonal Trend Method for a commuter route. These factors will be applied to two study area intersections.

Table 3. Seasonal Factors

SEASONAL FACTORS	US 101/District Highways/Routes to Fort Stevens Campground Average of Coastal Destination and Coastal Destination Route Trends	District Highways Not Leading to Fort Stevens Campground Summer Trend	Local Traffic Commuter Trend
May	1.284	1.121	1.035
September	1.239	N/A	N/A
October	N/A	1.201	N/A

Balancing

After the seasonal factors are applied, the volumes are input into Synchro and balanced accordingly. For conservative analysis, it is preferable to add traffic to the system instead of remove. This approach is taken whenever possible. Volume imbalances between intersections are managed to represent the volumes into and out of residential developments and commercial lots between study area intersections, whenever applicable.

Future Design Year 2035 Volumes

Forecast (year 2035) traffic volumes will be developed at count locations using the Asotria-Warrenton Regional Travel Demand Model. Consultant shall post-process (on a link-basis) model volumes using the National Cooperative Highway Research Program Report 765 guidelines in order to create future baseline 2035 traffic volumes. Consultant shall develop PM peak hour volumes for the scenario in accordance with ODOT's APM.

Evaluation Comparison Tools

Tools and techniques used to evaluate and compare the alternatives include traffic operations analysis tools for more detailed assessment of area conditions. Due to the potential latent demand shifts, the future baseline model volumes will be compared with the alternative model volumes and adjustment factors created and used as needed.

Traffic Mobility Targets

The City does not currently have a mobility target for its local streets; the project team anticipates reviewing mobility targets as part of the work involving updates to the City code. The traffic analysis will rely on Clatsop County and ODOT mobility targets for evaluation of intersection operations. A summary of mobility targets by study area intersection is provided in Table 4.

Clatsop County facilities have mobility targets that vary by intersection control. For signalized, all-way stop, or roundabout controlled intersections, the intersection as a whole must meet Level of Service (LOS) "E" or better and a volume to capacity (v/c) ratio not higher than 0.85. For two-way stop and yield controlled intersections, all movements serving more than 20 vehicles shall be maintained at LOS "E" or better and a v/c ratio not higher than 0.90. LOS "F" is acceptable at movements serving no more than 20 vehicles during the peak hour.

For State facilities, the Oregon Highway Plan (OHP) and the Highway Design Manual (HDM) will be used in the assessment of intersection operations. Both documents base their mobility performance on the calculation of volume-to-capacity (v/c) ratios; however, the standards in the HDM are based on higher performance levels than those in the OHP. The mobility targets from the OHP will be applied to the existing and future baseline (no build) analysis while the standards from the HDM will be applied to the evaluation of design alternatives.

Table 4. Mobility Targets by Study Intersection

		Mol	bility Target ¹	
ID	Count Location	Clatsop County ²	OHP ³	HDM ⁴
1	Pacific Dr at Willow St/Lake Dr ⁵	v/c <=0.85, LOS E	1.0	0.95
2	Pacific Dr at Iredale St ⁵	v/c <=0.90, LOS E	1.0	0.95
3	OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street	v/c <=0.90, LOS E	0.95	0.80
4	OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	v/c <=0.85, LOS E	0.95	0.80
5	Warrenton-Astoria Hwy at SE Galena Ave	v/c <=0.90, LOS E	0.95	0.80
6	E Harbor St at Marlin Dr ⁵		0.90 / 0.95	0.75 / 0.80
7	E Harbor St at SE Neptune Dr	v/c <=0.90, LOS E	0.90	0.75
8	E Harbor St at Young's Bay Plaza Access	v/c <=0.90, LOS E	0.90	0.75
9	E Harbor St at US 101 (signalized)		0.80	0.70
10	SW 2nd St/SW Gardenia Ave	v/c <=0.90, LOS E		
11	OR 104/S Main Ave at SW 2nd St ⁵	v/c <=0.90, LOS E	1.00	0.95
12	US 101 at SE Neptune Dr (signalized)		0.80	0.70
13	US 101 at Marlin Dr (signalized)		0.80	0.70
14	NW Ridge Rd at SW 9th St	v/c <=0.90, LOS E		
15	SW 9th St at OR 104/Ft Stevens Hwy	v/c <=0.90, LOS E	0.95	0.80
16	OR 104S/Ft Stevens Hwy Spur at US 101		0.80 / 0.90	0.70 / 0.75
17	US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US 101Bus/Marlin Dr		0.90 / 0.95	0.75 / 0.80
18	Delaura Beach Ln at Ridge Rd	v/c <=0.90, LOS E		
19	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave		0.95/0.90	0.80 / 0.75
20	SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	v/c <=0.90, LOS E	0.95	0.80
21	SE Ensign Ln at US 101 (signalized)	v/c <=0.85, LOS E	0.80	0.70
22	SE Ensign Ln at SE 19th St (signalized)	v/c <=0.90, LOS E		
23	SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur	v/c <=0.90, LOS E	0.90	0.75
24	US 101 at SE Dolphin Ave	v/c <=0.90, LOS E	0.80	0.70

Notes:

1. Unsignalized intersections may have two different mobility targets for the major and minor approaches

2. As the City of Warrenton does not currently have an adopted mobility target for local roads, the Clatsop County mobility targets were assumed for operational analysis

3. Table 6: Volume to Capacity Ratio Targets Outside Metro, Oregon Highway Plan, 1999

4. Table 10-2: 20 Year Design-Mobility Standards (Volume/Capacity [V/C] Ratio), Highway Design Manual, 2012

5. Intersection part of City of Warrenton Special Transportation Area

Arterial and Intersection Operations

The operational analysis will evaluate v/c ratios and level of service (LOS) using the Synchro/SimTraffic software program as outlined in the APM. Throughout the analysis process, TPAU and Region 2 Traffic staff will review modeling assumptions, analysis settings, and other assumptions to help ensure consistency of data with other studies under way.

An assessment of adding or removing traffic signals may be needed. Any assessments of new traffic signals will use ODOT's preliminary signal warrant spreadsheets. Addition or removal of a traffic

signal would require State Traffic-Roadway Engineer approval with support from the Region Traffic Engineer. Operational analysis results will be compared with applicable mobility standards, and specific recommendations for mitigation improvements needed to meet standards must be identified and verified by TPAU and Region 2 Traffic.

Traffic Operations Analysis Procedures

All operations will be evaluated using the methodology outlined in the 2000 and 2010 Highway Capacity Manuals (HCM) along with the procedures outlined in the APM. For signalized intersections, operations will be reported using HCM 2000, while HCM 2010 will be used for unsignalized intersections. The Synchro/SimTraffic analysis software was selected to perform the intersection analysis since it can provide the v/c ratio and LOS output of an HCM analysis and consider the systematic interaction of the intersections with regard to queuing and delays.

Crash History Analysis

Crash data for this project will be obtained from the ODOT Crash Analysis and Reporting Unit for the most recent five complete years. The most recent Safety Priority Index System ("SPIS") data will be obtained as well. Data will be requested for study area intersections and both state and non-state arterials and collectors with the City of Warrenton within the City Limits.

The study area evaluation will include an analysis of the most recent five-year crash history on state and non-state roadways at count locations and arterial and collector segments between count locations. This analysis screen for patterns amongst the crashes that are indicative of existing geometric or operational deficiencies. The Highway Safety Manual Part B Network Screening Probability of Specific Crash Types Exceeding Threshold Proportions method will be used in the screening process where sufficient reference populations are available. Based on the crash patterns, the analysis may identify improvements for the build alternatives that could mitigate safety issues. ODOT SPIS locations (if applicable) will be included in the crash history.

Intersection crash rates will be calculated for each study area intersection and compared against the published 90th Percentile rates in the APM (Version 2). If there are enough ADT volumes available, the critical crash rate will be calculated.

K-Factor

The K-factor is the percent of ADT in the peak hour. A K-factor will be used to develop an estimate for ADT along roadway segments and itnersections for the purpose of calculating crash rates. As no 24-hour counts were collected, the average K-factor developed from the 3, 16-hour counts (See Table 1 for list of these intersection locations). The APM suggests an expansion factor or 1.10 for 16-hour counts. The system peak (4:00 - 5:00 PM) hourly volume was divided by the 24-hour count for each of the three count locations to develop K-factors (0.085, 0.084, 0.082). Averaged, this is a K-factor of 0.084.

Attachments

Attachment 2 – Seasonal Factor Calculations

							2015	SEASONA	L TREND	TABLE (Up	dated: 11/09/	15)													
TREND	1-Jan	15-Jan	1-Feb	15-Feb	1-Mar	15-Mar	1-Apr	15-Apr	1-May	15-May	1-Jun	15-Jun	1-Jul	15-Jul	1-Aug	15-Aug	1-Sep	15-Sep	1-Oct	15-Oct	1-Nov	15-Nov	1-Dec	15-Dec	Peak Period Seasonal Factor
INTERSTATE URBANIZED	1.0354	1.0413	1.0201	0.9989	0.9830	0.9672	0.9579	0.9486	0.9527	0.9567	0.9381	0.9195	0.9220	0.9266	0.9215	0.9164	0.9352	0.9539	0.9565	0.9589	0.9775	0.9960	1.0119	1.0277	0.9164
INTERSTATE NONURBANIZED	1.2439	1.3049	1.2574	1.2100	1.1401	1.0701	1.0599	1.0496	1.0241	0.9986	0.9501	0.9016	0.8748	0.8438	0.8431	0.8425	0.8920	0.9416	0.9820	1.0224	1.0449	1.0675	1.1177	1.1679	0.8425
COMMUTER	1.0496	1.0551	1.0313	1.0074	0.9956	0.9838	0.9651	0.9465	0.9434	0.9403	0.9495	0.9586	0.9409	0.9239	0.9194	0.9149	0.9276	0.9402	0.9425	0.9446	0.9731	1.0016	1.0239	1.0463	0.9149
COASTAL DESTINATION	1.2026	1.2084	1.1729	1.1374	1.1039	1.0705	1.0686	1.0668	1.0441	1.0214	0.9840	0.9465	0.8933	0.8286	0.8273	0.8260	0.8771	0.9283	0.9852	1.0421	1.0991	1.1560	1.1766	1.1972	0.8260
COASTAL DESTINATION ROUTE	1.4607	1.4921	1.4221	1.3521	1.2817	1.2114	1.2020	1.1926	1.1319	1.0712	1.0110	0.9509	0.8643	0.7555	0.7552	0.7549	0.8330	0.9111	1.0208	1.1305	1.2110	1.2915	1.3498	1.4080	0.7549
AGRICULTURE	1.2495	1.2659	1.2218	1.1778	1.1386	1.0994	1.0579	1.0165	0.9771	0.9378	0.9092	0.8807	0.8642	0.8445	0.8412	0.8380	0.8419	0.8459	0.8791	0.9123	0.9800	1.0477	1.1405	1.2332	0.8380
RECREATIONAL SUMMER	1.7234	1.7892	1.7314	1.6737	1.5620	1.4504	1.3916	1.3329	1.1751	1.0174	0.9368	0.8563	0.7953	0.7218	0.7327	0.7436	0.8027	0.8618	0.9653	1.0688	1.2301	1.3915	1.5047	1.6180	0.7218
RECREATIONAL SUMMER WINTER	1.1753	1.2460	1.2580	1.2699	1.2940	1.3182	1.4411	1.5640	1.5262	1.4884	1.2854	1.0826	0.9657	0.8120	0.8456	0.8793	1.0312	1.1831	1.4133	1.6219	1.7084	1.7733	1.4489	1.1245	0.8120
RECREATIONAL WINTER	0.9698	0.9363	0.9427	0.9491	0.9747	1.0002	1.2456	1.4910	1.8800	2.2689	1.9669	1.6650	1.4562	1.1365	1.1639	1.1912	1.3347	1.4782	1.7869	2.0956	2.4558	2.8160	1.9444	1.0729	0.9363
SUMMER	1.2080	1.2355	1.1988	1.1622	1.1230	1.0838	1.0548	1.0258	0.9932	0.9607	0.9257	0.8907	0.8658	0.8350	0.8379	0.8407	0.8779	0.9152	0.9494	0.9836	1.0382	1.0929	1.1341	1.1753	0.8350
SUMMER < 2500	1.2981	1.3274	1.2867	1.2461	1.1836	1.1211	1.0715	1.0218	0.9712	0.9206	0.8897	0.8588	0.8385	0.8142	0.8233	0.8324	0.8482	0.8639	0.9022	0.9405	1.0159	1.0913	1.1759	1.2606	0.8142

*Seasonal Trend Table factors are based on previous year ATR data. The table is updated yearly. *Grey shading indicates months where seasonal factor is greater than 30%

ATR 04-001 (Gearhart)

ATR Ch	aracteris	tic Table- 🗧	30th HV	occurs o	n a weeke	nd, use %	6ADT
	2011	2012	2013	2014	2015	AVG	SF
JANUARY	81	77	78	79	79	79	1.6737
FEBRUARY	87	88	88	80	90	85	1.543
MARCH	91	87	93	92	95	92	1.431
APRIL	96	99	99	98	100	99	1.334
MAY	100	103	103	102	100	102	1.295
JUNE	111	108	111	110	114	111	1.189
JULY	125	127	128	127	124	126	1.042
AUGUST	131	134	131	133	127	132	1.000
SEPTEMBER	116	115	109	114	112	114	1.158
OCTOBER	95	95	97	96	95	95	1.381
NOVEMBER	85	86	86	87	86	86	1.531
DECEMBER	83	82	79	82	80	81	1.618

					May					September					October
		Interpolated		Peak	Seasonal		Interpolated		Peak	Seasonal		Interpolated		Peak	Seasonal
	15-May	27-May	1-Jun	Period	Factor	15-Sep	26-Sep	1-Oct	Period	Factor	15-Oct	21-Oct	1-Nov	Period	Factor
Summer	0.9607	0.9360	0.9257	0.8350	1.121	-		-			0.9836	1.0029	1.0382	0.8350	1.201
Coastal	1.0214	0.9950	0.9840	0.8260	1.205	0.9283	0.9674	0.9852	0.8260	1.171	-	-	-	-	-
Coastal Dest	1.0712	1.0287	1.0110	0.7549	1.363	0.9111	0.9865	1.0208	0.7549	1.307	-	-	-	-	
	average o	f coastal and o	coastal de	estination:	1.284	average of	of coastal and	coastal d	estination:	1.239	-	-	-	-	
Commuter	0.9403	0.9468	0.9495	0.9149	1.035	-	-	-	-	-	-	-	-	-	-

	7		Astoria	
	Warrenton	$\langle \cdot \rangle$	T	
<u> </u>	X			
	Ling /			R
	L'AL			
	H 4-001			

City of Warrenton Seasonal Adjustment Factors	Мау	eptembe	October
Summer trend from seasonal factor table	1.121	-	1.201
Avg. of seasonal factor table coastal destination and coastal destination rol	1.284	1.239	-
Commuter trend from Sesonal Factor Table	1.035	-	-

Traffic Analysis Methodology Memorandum -- Attachments

Appendix C

Volume Development

Job #: DKSA0000004

Traffic adjustments

Subject:	PM Turn	ning Movement Volumes					closure							
							olocaro							
						Existing Counts	Existing Counts	Existing	Existing	Base		30th Highest Hour		
							(with adjustments)			Year	Seasonal	Adjusted		2015
	Svnchro)				1-Hr Volume	1-Hr Volume	Heavy Vehicle	Heavy Vehicle	Adjustment	Adjustment	1-Hr Volume	Volume Balancing	Balanced Volumes
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Count	Percentage	Factor	Factor	PM Peak	Adjustments	PM Peak
			I	-	ı	I	1	1		I			1	I
1	10	Pacific Dr at Willow St/Lake Dr		EBL	10	4	4	0	0%	1.00	1.12	5	0	5
	10		EB	EBT	10	14	14	0	0%	1.00	1.12	15	5	20
	10	Count Date: 5/27/2015		EBR	10	12	12	0	0%	1.00	1.12	15	0	15
	10			WBL	10	59	59	2	3%	1.00	1.12	65	0	65
	10		WB	WBT	10	35	35	0	0%	1.00	1.12	40	0	40
	10			WBR	10	9	9	0	0%	1.00	1.12	10	5	15
	10	PM Peak Hour: 4:00 PM-5:00 PM		NBL	10	22	22	1	5%	1.00	1.12	25	0	25
	10	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	10	12	12	0	0%	1.00	1.12	15	0	15
	10			NBR	10	68	68	5	7%	1.00	1.12	75	0	75
	10			SBL	10	10	10	0	0%	1.00	1.12	10	0	10
	10	PHF:	SB	SBT	10	9	9	0	0%	1.00	1.12	10	0	10
	10	0.90		SBR	10	4	4	0	0%	1.00	1.12	5	0	5
			TEV	TEV	10	258	258	8				290	10	300
			I	-	ı	I	1	1		I			1	I
2	20	Pacific Dr at Iredale St		EBL	20	2	2	0	0%	1.00	1.12	0	2	2
	20		EB	EBT	20	111	111	5	5%	1.00	1.12	125	-10	115
	20	Count Date: 5/27/2015		EBR	20	2	2	0	0%	1.00	1.12	0	2	2
	20			WBL	20	1	1	0	0%	1.00	1.12	0	2	2
	20		WB	WBT	20	127	127	0	0%	1.00	1.12	140	0	140
	20			WBR	20	8	8	1	13%	1.00	1.12	10	0	10
	20	PM Peak Hour: 4:00 PM-5:00 PM		NBL	20	1	1	0	0%	1.00	1.12	0	2	2
	20	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	20	0	0	0	0%	1.00	1.12	0	1	1
	20			NBR	20	1	1	0	0%	1.00	1.12	0	2	2
	20			SBL	20	9	9	1	11%	1.00	1.12	10	0	10
	20	PHF:	SB	SBT	20	1	1	1	100%	1.00	1.12	0	5	5
	20	0.89		SBR	20	3	3	0	0%	1.00	1.12	5	0	5
			TEV	TEV	20	266	266	8				290	6	296
			3 		•	8	-	8		: 	•	+	* 1	1
3	30	OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Str		EBL	30	13	13	0	0%	1.00	1.12	15	0	15
	30		EB	EBT	30	1	1	0	0%	1.00	1.12	0	1	1
	30	Count Date: 5/27/2015		EBR	30	28	28	1	4%	1.00	1.12	30	0	30
	30			WBL	30	1	1	0	0%	1.00	1.12	0	1	1
	30		WB	WBT	30	2	2	0	0%	1.00	1.12	0	2	2
	30			WBR	30	3	3	0	0%	1.00	1.12	5	0	5
	30	PM Peak Hour: 4:00 PM-5:00 PM		NBL	30	50	50	0	0%	1.00	1.12	55	0	55
	30	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	30	296	296	7	2%	1.00	1.12	330	0	330
	30			NBR	30	2	2	0	0%	1.00	1.12	0	2	2
	30			SBL	30	5	5	0	0%	1.00	1.12	5	0	5
	30	PHF:	SB	SBT	30	238	238	9	4%	1.00	1.12	265	0	265
	30	0.94		SBR	30	11	11	1	9%	1.00	1.12	10	0	10
			TEV	TEV	30	650	650	18				715	6	721
	10		1	501	40				05%	4.04	4.04	-		
4	40	UR 104/Ft Stevens Hwy at NE Skipanon Dr/S Mair		EBL	40	4	4	1	25%	1.01	1.24	5	0	5
1	40		EB	EBT	40	142	142	14	10%	1.01	1.24	175	25	200

Subject: PM Turning Movement Volumes

8/16/2016

Job #: DKSA0000004

Traffic adjustments due to bridge

closure

							0.000a.o							
						Existing Counts	Existing Counts	Fxisting	Fxisting	Base		30th Highest Hour		
						Existing sound	(with adjustments)	Exioting	Exioting	Year	Seasonal	Adjusted		2015
	Curahra					1-Hr Volume	1-Hr Volume	Heavy Vehicle	Heavy Vehicle	Adjustment	Adjustment	1-Hr Volume	Volume Balancing	Balanced Volumes
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Count	Percentage	Factor	Factor	PM Peak	Adjustments	PM Peak
IT O ID		interocotion	Dirootion	movomont	IIICID	T III T OUN	T III T OUN	oount	reroentage	1 40101	Tuotoi	T III T Ouk	rajuotinento	T III T OUX
	40	Count Date: 9/26/2013		EBR	40	77	77	6	8%	1.01	1.24	95	-5	90
	40			WBL	40	203	203	2	1%	1.01	1.24	255	20	275
	40		WB	WBT	40	203	203	12	6%	1.01	1.24	255	20	275
	40			WBR	40	50	50	4	8%	1.01	1.24	60	5	65
	40	PM Peak Hour: 4:45 PM-5:45 PM		NBL	40	86	86	8	9%	1.01	1.24	105	0	105
	40	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	40	30	30	2	7%	1.01	1.24	35	0	35
	40			NBR	40	157	157	3	2%	1.01	1.24	195	75	270
	40			SBL	40	56	56	7	13%	1.01	1.24	70	0	70
	40	PHF:	SB	SBT	40	54	54	4	7%	1.01	1.24	65	0	65
	40	0.96		SBR	40	3	3	1	33%	1.01	1.24	5	0	5
			TEV	TEV	40	1065	1065	64				1320	140	1460
5	50	Warrenton-Astoria Hwy at SE Galena Ave	T	FRI	50	2	2	Λ	0%	1.00	1.28	5	0	5
0	50	Warrenton-Astonia Hwy at de Galena Ave	FB	FRT	50	444	444	13	3%	1.00	1.20	570	0	570
	50	Count Date: 5/27/2015	20	FBR	50	3	3	0	0%	1.00	1.20	5	0	5
	50			WBL	50	6	6	0	0%	1.00	1.28	10	0	10
	50		WB	WBT	50	531	531	13	2%	1.00	1.28	680	0	680
	50			WBR	50	2	2	0	0%	1.00	1.28	5	5	10
	50	PM Peak Hour: 4:45 PM-5:45 PM		NBL	50	2	2	0	0%	1.00	1.28	5	0	5
	50	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	50	0	0	0	0%	1.00	1.28	0	1	1
	50			NBR	50	2	2	0	0%	1.00	1.28	5	0	5
	50			SBL	50	1	1	0	0%	1.00	1.28	0	1	1
	50	PHF:	SB	SBT	50	0	0	0	0%	1.00	1.28	0	1	1
	50	0.95		SBR	50	2	2	0	0%	1.00	1.28	5	0	5
			TEV	TEV	50	995	995	26				1290	8	1298
			1								4.00			
6	60	E Harbor St at Marlin Dr	50	EBL	60	0	0	0	0%	1.00	1.28	0	0	0
	60	0	EB	EBI	60	374	354	17	5%	1.00	1.28	455	-5	450
	60	Count Date: 5/27/2015		EBR	60	11	97	0	0%	1.00	1.28	125	0	125
	60		WD.	WDT	60	10	10	11	0%	1.00	1.20	20	0	20
	60		VVD		60	415	400	0	3%	1.00	1.20	515	0	515
	60	PM Pook Hour: 4:45 PM 5:45 PM			60	120	144	1	19/	1.00	1.20	195	0	195
	60	PM Peak Hour Llead: 4:00 PM 5:00 PM	NB	NBT	60	0	0	0	0%	1.00	1.20	0	0	0
	60	FIN Fear Hour Osed. 4.00 FIN-5.00 FIN	ND	NBD	60	11	11	0	0%	1.00	1.20	15	0	15
	60			SBI	60	0	0	0	0%	1.00	1.20	0	0	0
	60	DHE	SB	SBL	60	0	0	0	0%	1.00	1.20	0	0	0
	60	0.96	05	SBR	60	0	0	0	0%	1.00	1.20	0	0	0
	00	0.00	TEV	TEV	60	1022	1022	30	070	1.00	1.20	1315	-5	1310
			1			1022	1011					1010	· · ·	1010
7	70	E Harbor St at SE Neptune Dr		EBL	70	0	0	0	0%	1.00	1.28	0	0	0
	70		EB	EBT	70	294	274	15	5%	1.00	1.28	350	0	350
	70	Count Date: 5/27/2015		EBR	70	90	90	1	1%	1.00	1.28	115	0	115
	70			WBL	70	84	84	0	0%	1.00	1.28	110	0	110

Job #: DKSA0000004

Traffic adjustments

due to bridge

Subject:	PM Turn	ning Movement Volumes					closure							
						Existing Counts	Existing Counts	Existing	Existing	Base		30th Highest Hour		
							(with adjustments)			Year	Seasonal	Adjusted		2015
	Synchro)				1-Hr Volume	1-Hr Volume	Heavy Vehicle	Heavy Vehicle	Adjustment	Adjustment	1-Hr Volume	Volume Balancing	Balanced Volumes
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Count	Percentage	Factor	Factor	PM Peak	Adjustments	PM Peak
	70	Signalized	W/P	W/PT	70	254	330	10	30/	1.00	1.09	425	5	420
	70	Signalized	VVD	WDT	70	0	0	12	0%	1.00	1.20	455	-5	430
	70	PM Peak Hour 1:15 PM-5:15 PM		NRI	70	83	83	0	0%	1.00	1.20	105	0	105
	70	PM Peak Hour Lised: 4:00 PM_5:00 PM	NB	NBT	70	0	0	0	0%	1.00	1.20	0	0	0
	70		110	NBR	70	65	65	0	0%	1.00	1.20	85	5	90
	70			SBI	70	0	0	0	0%	1.00	1.20	0	0	0
	70	PHF	SB	SBT	70	0	0	0	0%	1.00	1.20	0	0	0
	70	0.95	05	SBR	70	0	0	0	0%	1.00	1.28	0	0	0
			TEV	TEV	70	970	935	28	070			1200	0	1200
8	80	E Harbor St at Young's Bay Plaza Access		EBL	80	36	36	1	3%	1.00	1.28	45	0	45
	80		EB	EBT	80	320	300	15	5%	1.00	1.28	385	-5	380
	80	Count Date: 5/27/2015		EBR	80	13	13	0	0%	1.00	1.28	15	0	15
	80			WBL	80	67	67	2	3%	1.00	1.28	85	-5	80
	80		WB	WBT	80	364	349	10	3%	1.00	1.28	450	-5	445
	80			WBR	80	21	21	0	0%	1.00	1.28	25	0	25
	80	PM Peak Hour: 4:45 PM-5:45 PM		NBL	80	6	6	0	0%	1.00	1.28	10	0	10
	80	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	80	8	8	1	13%	1.00	1.28	10	0	10
	80			NBR	80	54	54	1	2%	1.00	1.28	70	0	70
	80			SBL	80	46	46	0	0%	1.00	1.28	60	-5	55
	80	PHF:	SB	SBT	80	9	9	0	0%	1.00	1.28	10	0	10
	80	0.93		SBR	80	68	68	2	3%	1.00	1.28	85	0	85
			IEV	IEV	80	1012	9//	32				1250	-20	1230
9	90	E Harbor St at US 101 (signalized)		EBL	90	377	357	8	2%	1.00	1.28	460	0	460
	90		EB	EBT	90	0	0	0	0%	1.00	1.28	0	0	0
	90	Count Date: 5/28/2015		EBR	90	35	35	0	0%	1.00	1.28	45	0	45
	90			WBL	90	0	0	0	0%	1.00	1.28	0	0	0
	90		WB	WBT	90	0	0	0	0%	1.00	1.28	0	0	0
	90			WBR	90	0	0	0	0%	1.00	1.28	0	0	0
	90	PM Peak Hour: 4:00 PM-5:00 PM		NBL	90	41	41	1	2%	1.00	1.28	55	0	55
	90	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	90	817	737	6	1%	1.00	1.28	945	-20	925
	90			NBR	90	0	0	0	0%	1.00	1.28	0	0	0
	90			SBL	90	5	5	0	0%	1.00	1.28	5	-5	0
	90	PHF:	SB	SBT	90	733	708	1	0%	1.00	1.28	910	0	910
	90	0.98		SBR	90	400	385	4	1%	1.00	1.28	495	0	495
			TEV	TEV	90	2408	2268	20				2915	-25	2890
10	100	SW/ 2nd St/SW/ Gardenia Avia		EDI	100	0	0	0	0%	1.00	1.04	0	1	1
10	100		ED	EDL	100	11	11	0	0%	1.00	1.24	15	0	15
	100	Count Date: 5/28/2015	ED	FRR	100	3	3	0	0%	1.00	1.24	5	0	5
	100	Sound Date. 0/20/2010		W/RI	100	11	11	0	0%	1.00	1.24	15	0	15
	100		WR	WRT	100	19	19	1	5%	1.00	1.24	25	0	25
	100		110	WRR	100	7	7	0	0%	1.00	1.24	10	0	10
1	100				.00			0	070	1.00	1.27	10	v	10

8/16/2016

Job #: DKSA0000004

8/16/2016

Traffic adjustments due to bridge

Subject:	PM Turning Movement Volumes						closure							
							olocalo							
						Existing Counts	Existing Counts	Existing	Existing	Base		30th Highest Hour		
							(with adjustments)			Year	Seasonal	Adjusted		2015
	Synchro					1-Hr Volume	1-Hr Volume	Heavy Vehicle	Heavy Vehicle	Adjustment	Adjustment	1-Hr Volume	Volume Balancing	Balanced Volumes
N-S ID	ĪD	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Count	Percentage	Factor	Factor	PM Peak	Adjustments	PM Peak
	100				(-	-		00/	4.00				· ·
	100	PM Peak Hour: 4:45 PM-5:45 PM		NBL	100	2	2	0	0%	1.00	1.24	0	1	1
	100	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	100	2	2	0	0%	1.00	1.24	0	1	1
	100			NBR	100	5	5	1	20%	1.00	1.24	5	0	5
	100			SBL	100	4	4	0	0%	1.00	1.24	5	0	5
	100	PHF:	SB	SBT	100	1	1	0	0%	1.00	1.24	0	1	1
	100	0.84		SBR	100	0	0	0	0%	1.00	1.24	0	1	1
			TEV	TEV	100	65	65	2				80	5	85
			-	1	1				T			1		
11	110	OR 104/S Main Ave at SW 2nd St		EBL	110	65	65	3	5%	1.00	1.28	85	0	85
	110		EB	EBT	110	5	5	0	0%	1.00	1.28	5	0	5
	110	Count Date: 5/27/2015		EBR	110	43	43	0	0%	1.00	1.28	55	0	55
	110			WBL	110	2	2	0	0%	1.00	1.28	5	0	5
	110		WB	WBT	110	3	3	1	33%	1.00	1.28	5	0	5
	110			WBR	110	6	6	0	0%	1.00	1.28	10	0	10
	110	PM Peak Hour: 4:00 PM-5:00 PM		NBL	110	33	33	0	0%	1.00	1.28	40	0	40
	110	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	110	247	247	4	2%	1.00	1.28	315	0	315
	110			NBR	110	5	5	0	0%	1.00	1.28	5	0	5
	110			SBL	110	5	5	1	20%	1.00	1.28	5	5	10
	110	PHF:	SB	SBT	110	262	262	4	2%	1.00	1.28	335	0	335
	110	0.92		SBR	110	65	65	2	3%	1.00	1.28	85	0	85
			TEV	TEV	110	741	741	15				950	5	955
					-	_		_						
12	120	US 101 at SE Neptune Dr (signalized)		EBL	120	156	156	1	1%	1.00	1.28	200	0	200
	120		EB	EBT	120	0	0	0	0%	1.00	1.28	0	0	0
	120	Count Date: 5/28/2015		EBR	120	163	163	0	0%	1.00	1.28	210	0	210
	120			WBL	120	0	0	0	0%	1.00	1.28	0	0	0
	120		WB	WBT	120	0	0	0	0%	1.00	1.28	0	0	0
	120			WBR	120	0	0	0	0%	1.00	1.28	0	0	0
	120	PM Peak Hour: 4:15 PM-5:15 PM		NBL	120	147	147	1	1%	1.00	1.28	190	-5	185
	120	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	120	686	606	5	1%	1.00	1.28	780	0	780
	120			NBR	120	0	0	0	0%	1.00	1.28	0	0	0
	120			SBL	120	0	0	0	0%	1.00	1.28	0	0	0
	120	PHF:	SB	SBT	120	664	639	3	0%	1.00	1.28	820	0	820
	120	0.94		SBR	120	104	104	1	1%	1.00	1.28	135	0	135
			TEV	TEV	120	1920	1815	11				2335	-5	2330
			-		-	-	-		·			•	•	
13	130	US 101 at Marlin Dr (signalized)		EBL	130	29	29	5	17%	1.02	1.24	35	10	45
	130		EB	EBT	130	67	67	2	3%	1.02	1.24	85	0	85
	130	Count Date: 9/26/2013		EBR	130	105	105	7	7%	1.02	1.24	130	0	130
1	130			WBL	130	57	57	0	0%	1.02	1.24	70	0	70
1	130		WB	WBT	130	97	97	6	6%	1.02	1.24	120	0	120
	130			WBR	130	87	87	8	9%	1.02	1.24	110	0	110
	130	PM Peak Hour: 4:15 PM-5:15 PM		NBL	130	101	101	11	11%	1.02	1.24	125	0	125
1	130	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	130	528	528	19	4%	1.02	1.24	665	145	810

Job #: DKSA0000004

8/16/2016

Traffic adjustments

Subject:	PM Turn	ning Movement Volumes				closure								
						Existing Counts	Existing Counts	Existing	Existing	Paga		20th Highast Hour		
						Existing counts	(with adjustments)	Existing	Existing	Year	Seasonal	Adjusted		2015
	Synchro					1-Hr Volume	1-Hr Volume	Heavy Vehicle	Heavy Vehicle	Adjustment	Adjustment	1-Hr Volume	Volume Balancing	Balanced Volumes
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Count	Percentage	Factor	Factor	PM Peak	Adjustments	PM Peak
	130			NBR	130	14	14	1	7%	1.02	1 24	20	0	20
	130			SBI	130	65	65	2	3%	1.02	1.24	80	0	80
	130	PHF:	SB	SBT	130	563	563	26	5%	1.02	1.24	710	195	905
	130	0.91		SBR	130	26	26	2	8%	1.02	1.24	35	10	45
			TEV	TEV	130	1739	1739	89			1	2185	360	2545
14	140	NW Ridge Rd at SW 9th St		EBL	140	0	0	0	0%	1.00	1.28	0	0	0
	140		EB	EBT	140	0	0	0	0%	1.00	1.28	0	0	0
	140	Count Date: 5/27/2015		EBR	140	0	0	0	0%	1.00	1.28	0	0	0
	140			WBL	140	12	12	1	8%	1.00	1.28	15	0	15
	140		WB	WBT	140	0	0	0	0%	1.00	1.28	0	0	0
	140			WBR	140	66	66	1	2%	1.00	1.28	85	0	85
	140	PM Peak Hour: 4:45 PM-5:45 PM		NBL	140	0	0	0	0%	1.00	1.28	0	0	0
	140	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	140	59	59	5	8%	1.00	1.28	/5	0	/5
	140			NBR	140	9	9	2	22%	1.00	1.28	10	5	15
	140		CD	SBL	140	17	1/	0	0%	1.00	1.28	20	5	25
	140		28	SBI	140	48	48	2	4%	1.00	1.28	60	0	60
	140	0.04	TEV	TEV	140	211	211	11	0 %	1.00	1.20	265	10	275
					140	211	211					200	10	215
15	150	SW 9th St at OR 104/Ft Stevens Hwy		EBL	150	33	33	0	0%	1.00	1.28	40	0	40
	150		EB	EBT	150	1	1	0	0%	1.00	1.28	0	1	1
	150	Count Date: 5/27/2015		EBR	150	40	40	0	0%	1.00	1.28	50	0	50
	150			WBL	150	0	0	0	0%	1.00	1.28	0	1	1
	150		WB	WBT	150	1	1	0	0%	1.00	1.28	0	1	1
	150			WBR	150	2	2	0	0%	1.00	1.28	5	0	5
	150	PM Peak Hour: 4:00 PM-5:00 PM		NBL	150	56	56	0	0%	1.00	1.28	70	0	70
	150	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	150	231	231	5	2%	1.00	1.28	295	0	295
	150			NBR	150	1	1	0	0%	1.00	1.28	0	1	1
	150			SBL	150	2	2	0	0%	1.00	1.28	5	0	5
	150	PHF:	SB	SBT	150	199	199	3	2%	1.00	1.28	255	0	255
	150	0.95		SBR	150	76	76	0	0%	1.00	1.28	100	0	100
			IEV	IEV	150	642	642	8			ļ	820	4	824
16	160	OR 104S/Ft Stevens Hwy Spur at US 101	1	EBL	160	0	0	0	0%	1.00	1.28	0	0	0
	160	······································	EB	EBT	160	0	0	0	0%	1.00	1.28	0	0	0
	160	Count Date: 5/27/2015		EBR	160	5	5	0	0%	1.00	1.28	5	0	5
	160		<u> </u>	WBL	160	0	0	0	0%	1.00	1.28	0	0	0
	160		WB	WBT	160	0	0	0	0%	1.00	1.28	0	0	0
	160			WBR	160	11	11	0	0%	1.00	1.28	15	0	15
	160	PM Peak Hour: 4:30 PM-5:30 PM		NBL	160	11	11	0	0%	1.00	1.28	15	0	15
	160	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	160	714	669	15	2%	1.00	1.28	860	80	940
	160			NBR	160	16	16	2	13%	1.00	1.28	20	0	20
	160			SBL	160	1	1	0	0%	1.00	1.28	0	0	0

Project: Warrenton TSP Update Job #: DKSA0000004

8/16/2016

Traffic adjustments

Subject:	PM Turni	ing Movement Volumes				closure								
										_				
						Existing Counts	Existing Counts	Existing	Existing	Base	Seasonal	30th Highest Hour		2015
	Curahas					1-Hr Volume	(with aujustinents)	Heavy Vehicle	Heavy Vehicle	Adjustment	Adjustment	1-Hr Volume	Volume Balancing	2013 Balanced Volumes
N-S ID	Synchro	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Count	Percentage	Factor	Factor	PM Peak		PM Peak
		interocotion	Diroction	movement	int ib	T III T CUIX	T III T OUR	oount	renoentage	Tuotoi	Tuotoi	Thir Cult	rajuotinento	T III T OUN
	160	PHF:	SB	SBT	160	695	685	21	3%	1.00	1.28	880	105	985
	160	0.91		SBR	160	110	95	3	3%	1.00	1.28	120	0	120
			TEV	TEV	160	1563	1493	41				1915	185	2100
			-	-						r	1	1		
17	170	US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hw	50	EBL	170	10	10	0	0%	1.00	1.12	10	0	10
	170		EB	EBT	170	14	14	2	14%	1.00	1.12	15	0	15
	170	Count Date: 5/27/2015		EBR	1/0	0	0	0	0%	1.00	1.12	0	0	0
	170		14/5	WBL	170	0	0	0	0%	1.00	1.12	0	0	0
	170		WB	WBI	170	4	4	0	0%	1.00	1.12	5	0	5
	1/0			WBR	1/0	166	196	3	2%	1.00	1.12	220	0	220
	1/0	PM Peak Hour: 4:00 PM-5:00 PM		NBL	1/0	0	0	0	0%	1.00	1.12	0	0	0
	1/0	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBI	1/0	1	1	0	0%	1.00	1.12	0	0	0
	170			NBR	1/0	0	0	0	0%	1.00	1.12	0	0	0
	170		0.5	SBL	170	73	123	4	5%	1.00	1.12	140	0	140
	1/0	PHF:	SB	SBI	1/0	1	1	0	0%	1.00	1.12	0	0	0
	170	0.90	TEV/	SBR	170	9	9	0	0%	1.00	1.12	10	0	10
_			IEV	IEV	1/0	278	358	9				400	0	400
18	180	Delaura Beach I n at Pidge Pd		EBI	180	3	3	0	0%	1.00	1.28	5	0	5
10	180	Delaura Deach Eir at Nuge Nu	FB	FRT	180	12	12	1	8%	1.00	1.20	15	-14	1
	180	Count Date: 5/27/2015	LD	EBR	180	0	0	0	0%	1.00	1.20	0	15	15
	180	Intersection has unconventional		WRI	180	3	3	0	0%	1.00	1.20	5	-4	1
	180	geometric configuration	WB	WBT	180	19	19	0	0%	1.00	1.20	25	-24	1
	180	geometrie comgutation		WBR	180	66	66	7	11%	1.00	1.20	85	-84	1
	180	PM Peak Hour: 4:45 PM-5:45 PM		NBI	180	1	1	0	0%	1.00	1.20	5	25	30
	180	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	180	0	0	0	0%	1.00	1.20	0	85	85
	180			NBR	180	0	0	0	0%	1 00	1.28	0	1	1
	180			SBI	180	42	42	2	5%	1 00	1.28	55	-54	1
	180	PHE	SB	SBT	180	12	12	1	8%	1.00	1.20	15	40	55
	180	0.86	05	SBR	180	4	4	0	0%	1.00	1.20	5	-4	1
			TEV	TEV	180	162	162	11	0,0			215	-18	197
19	190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens		EBL	190	0	0	0	0%	1.02	1.24	0	0	0
	190		EB	EBT	190	0	0	0	0%	1.02	1.24	0	0	0
	190	Count Date: 9/26/2013		EBR	190	0	0	0	0%	1.02	1.24	0	0	0
	190			WBL	190	64	64	5	8%	1.02	1.24	80	0	80
	190		WB	WBT	190	0	0	0	0%	1.02	1.24	0	0	0
	190			WBR	190	142	142	1	1%	1.02	1.24	180	20	200
	190	PM Peak Hour: 4:45 PM-5:45 PM		NBL	190	0	0	0	0%	1.02	1.24	0	0	0
	190	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	190	121	121	5	4%	1.02	1.24	150	0	150
	190			NBR	190	56	56	5	9%	1.02	1.24	70	0	70
	190			SBL	190	106	106	0	0%	1.02	1.24	135	0	135
	190	PHF:	SB	SBT	190	103	103	5	5%	1.02	1.24	130	0	130
	190	0.88		SBR	190	0	0	0	0%	1.02	1.24	0	0	0

8/16/2016

Job #: DKSA0000004

Traffic adjustments due to bridge

Subject:	PM Turn	ing Movement Volumes				closure								
							ciosure							
						Existing Counts	Existing Counts	Existing	Existing	Base		30th Highest Hour		
						-	(with adjustments)	-	-	Year	Seasonal	Adjusted		2015
	Synchro					1-Hr Volume	1-Hr Volume	Heavy Vehicle	Heavy Vehicle	Adjustment	Adjustment	1-Hr Volume	Volume Balancing	Balanced Volumes
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Count	Percentage	Factor	Factor	PM Peak	Adjustments	PM Peak
													.,	
			TEV	TEV	190	592	592	21		<u> </u>		745	20	765
	200	CWI 19th Ct/Dalaura Daeach La at C Main Ava/Et Ct		EDI	200	47	47	0	40/	1.00	1.00	C0	0	00
20	200	Sw 16th St/Delaura Beach Lh at S Main Ave/Ft Ste	50	EBL	200	47	47	2	4%	1.00	1.20	60	0	00
	200		EB	EBI	200	0	0	0	0%	1.00	1.20	0	0	0
	200	Count Date: 5/27/2015		EBR	200	19	19	1	5%	1.00	1.28	25	0	25
	200			WBL	200	0	0	0	0%	1.00	1.28	0	0	0
	200		WB	WBT	200	0	0	0	0%	1.00	1.28	0	0	0
	200			WBR	200	0	0	0	0%	1.00	1.28	0	0	0
	200	PM Peak Hour: 4:00 PM-5:00 PM		NBL	200	16	16	3	19%	1.00	1.28	20	0	20
	200	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	200	101	101	5	5%	1.00	1.28	130	20	150
	200			NBR	200	0	0	0	0%	1.00	1.28	0	0	0
	200			SBL	200	0	0	0	0%	1.00	1.28	0	0	0
	200	PHF:	SB	SBT	200	81	81	3	4%	1.00	1.28	105	10	115
	200	0.94		SBR	200	57	57	3	5%	1.00	1.28	75	20	95
			TEV	TEV	200	321	321	17				415	50	465
						•	•		•	•		•		
21	210	SE Ensign Ln at US 101 (signalized)		EBL	210	179	144	0	0%	1.00	1.28	185	0	185
	210		EB	EBT	210	136	206	1	1%	1.00	1.28	265	0	265
	210	Count Date: 5/28/2015		EBR	210	72	72	0	0%	1.00	1.28	90	0	90
	210			WBL	210	125	165	0	0%	1.00	1.28	210	0	210
	210		WB	WBT	210	124	174	0	0%	1.00	1.28	225	0	225
	210			WBR	210	169	169	0	0%	1.00	1.28	215	0	215
	210	PM Peak Hour: 4:15 PM-5:15 PM		NBL	210	73	73	0	0%	1.00	1.28	95	0	95
	210	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	210	402	377	6	1%	1.00	1.28	485	90	575
	210			NBR	210	88	128	1	1%	1.00	1.28	165	0	165
	210			SBL	210	192	192	0	0%	1.00	1.28	245	0	245
	210	PHF:	SB	SBT	210	486	476	3	1%	1.00	1.28	610	25	635
	210	0.91		SBR	210	87	87	1	1%	1.00	1.28	110	0	110
			TEV	TEV	210	2133	2263	12			-	2900	115	3015
22	220	SE Ensign Ln at SE 19th St		EBL	220	3	3	0	0%	1.00	1.24	5	0	5
	220	-	EB	EBT	220	60	170	5	8%	1.00	1.24	210	5	215
	220	Count Date: 5/27/2015		EBR	220	52	52	2	4%	1.00	1.24	65	0	65
	220			WBL	220	4	4	0	0%	1.00	1.24	5	0	5
	220		WB	WBT	220	49	139	0	0%	1.00	1.24	170	0	170
	220		_	WBR	220	7	7	0	0%	1.00	1.24	10	0	10
	220	PM Peak Hour: 4:00 PM-5:00 PM		NRI	220	47	47	4	9%	1.00	1.24	60	0	60
	220	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	220	10	10	0	0%	1.00	1 24	10	0	10
	220			NRR	220	2	2	0	0%	1.00	1 24	0	5	5
	220			SBI	220	4	4	0	0%	1.00	1.24	5	5	10
	220	PHE	SR	SBT	220	7	7	0	0%	1.00	1.24	10	0	10
	220	0.88	00	SED	220	33	33	0	0%	1.00	1.24	40	0	40
	220	0.00	TEV	JOR	220	33	479	14	0%	1.00	1.24	40	15	40
			IEV	IEV	220	2/0	4/8	11				290	10	CUO

Job #: DKSA0000004

Traffic adjustments

due to bridge

Subject:	PM Turr	ning Movement Volumes					closure							
							olocalo							
						Existing Counts	Existing Counts	Existing	Existing	Base		30th Highest Hour		
							(with adjustments)			Year	Seasonal	Adjusted		2015
	Svnchro					1-Hr Volume	1-Hr Volume	Heavy Vehicle	Heavy Vehicle	Adjustment	Adjustment	1-Hr Volume	Volume Balancing	Balanced Volumes
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Count	Percentage	Factor	Factor	PM Peak	Adjustments	PM Peak
			1											
23	230	SE Ensign Ln at US 101Bus/Warrenton-Astoria Hw		EBL	230	2	2	0	0%	1.00	1.20	5	0	5
	230		EB	EBT	230	187	187	9	5%	1.00	1.20	225	0	225
	230	Count Date: 10/21/2015		EBR	230	0	0	0	0%	1.00	1.20	0	0	0
	230			WBL	230	0	0	0	0%	1.00	1.20	0	0	0
	230		WB	WBT	230	120	120	5	4%	1.00	1.20	145	0	145
	230			WBR	230	50	50	1	2%	1.00	1.20	60	115	175
	230	PM Peak Hour: 4:30 PM-5:30 PM		NBL	230	0	0	0	0%	1.00	1.20	0	0	0
	230	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	230	0	0	0	0%	1.00	1.20	0	0	0
	230			NBR	230	0	0	0	0%	1.00	1.20	0	0	0
	230			SBL	230	84	84	10	12%	1.00	1.20	100	0	100
	230	PHF:	SB	SBT	230	0	0	0	0%	1.00	1.20	0	0	0
	230	0.79		SBR	230	10	10	0	0%	1.00	1.20	10	30	40
			TEV	TEV	230	453	453	25			1	545	145	690
											•			
24	240	US 101 at SE Dolphin Ave		EBL	240	0	0	0	0%	1.00	1.28	0	1	1
	240		EB	EBT	240	0	0	0	0%	1.00	1.28	0	1	1
	240	Count Date: 5/27/2015		EBR	240	0	0	2	0%	1.00	1.28	0	1	1
	240			WBL	240	7	7	0	0%	1.00	1.28	10	0	10
	240		WB	WBT	240	0	0	0	0%	1.00	1.28	0	1	1
	240			WBR	240	52	52	0	0%	1.00	1.28	65	0	65
	240	PM Peak Hour: 9:15 AM-10:15 AM		NBL	240	0	0	1	0%	1.00	1.28	0	1	1
	240	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	240	520	520	14	3%	1.00	1.28	670	100	770
	240			NBR	240	4	4	0	0%	1.00	1.28	5	0	5
	240			SBL	240	29	29	0	0%	1.00	1.28	35	0	35
	240	PHF:	SB	SBT	240	582	612	15	3%	1.00	1.28	785	115	900
	240	0.89		SBR	240	0	0	1	0%	1.00	1.28	0	1	1
		TEV TEV 2			240	1194	1224	33			0.72	1570	221	1791
												•		

8/16/2016

		AVERAGE			Мау		AVERAGE			September		AVERAGE			October
		Interpolated		Peak	AVERAGE		Interpolated		Peak	AVERAGE		Interpolated		Peak	AVERAGE
	15-May	27-May	1-Jun	Period		15-Sep	26-Sep	1-Oct	Period		15-Oct	21-Oct	1-Nov	Period	
Summer	0.9607	0.9360	0.9257	0.8350	1.121	-	-	-	-	-	0.9836	1.0029	1.0382	0.8350	
Coastal	1.0214	0.9950	0.9840	0.8260	1.205	0.9283	0.9674	0.9852	0.8260	1.171	-	-	-	-	-
Coastal Dest	1.0712	1.0287	1.0110	0.7549	1.363	0.9111	0.9865	1.0208	0.7549	1.307	-	-	-	-	-
	average	of coastal and	coastal de	estination:	1.012	average	of coastal an	d coastal d	estination:	0.977	-	-	-	-	-
Commuter	0.9403	0.9468	0.9495	0.9149	1.035	-	-	-	-	-	-	-	-	-	-

City of Warrenton Seasonal Adjustment Factors - AVERAGE	Мау	Septembe	October
Summer trend from seasonal factor table	0.936	-	1.003
Avg. of seasonal factor table coastal destination and coastal destination route	1.012	0.977	-
Commuter trend from Sesonal Factor Table	0.947	-	-
City of Warrenton Seasonal Adjustment Factors	May	Septembe	October
Summer trend from seasonal factor table	1.121	-	1.201
Avg. of seasonal factor table coastal destination and coastal destination route	1.284	1.239 -	
Commuter trend from Sesonal Factor Table	1.035		

Job #: DKSA0000004

Subject: PM Turning Movement Volumes

Traffic adjustments

oubject.	i mi i ui ii	ing movement volumes					closure			
						Existing Counts	Existing Counts	Basa		Average Book Hour
						Existing Counts	(with adjustments)	Voar		Average Feak Hour
						4.11m.V.a.h.maa	(with aujustments)	Tedi Adlivetinent	ANNUAL	4 11v Maluma
	Synchro		D' I			1-Hr Volume	1-Hr Volume	Adjustment	Adjustment	1-Hr Volume
N-S ID	IJ	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Factor	Factor	PM Peak
1	10	Pacific Dr at Willow St/Lake Dr	1	FBI	10	4	4	1 00	0.94	5
	10		EB	FBT	10	14	14	1 00	0.94	15
	10	Count Date: 5/27/2015		FBR	10	12	12	1.00	0.94	10
	10			WBI	10	59	59	1.00	0.94	55
	10		WB	WBT	10	35	35	1 00	0.94	35
	10			WBR	10	9	9	1.00	0.94	10
	10	PM Peak Hour: 4:00 PM-5:00 PM		NBI	10	22	22	1.00	0.94	20
	10	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	10	12	12	1.00	0.94	10
	10			NBR	10	68	68	1.00	0.94	65
	10			SBI	10	10	10	1.00	0.94	10
	10	PHF	SB	SBT	10	9	9	1.00	0.94	10
	10	0.90	05	SBR	10	4	4	1.00	0.94	5
	10	0.00	TEV	TEV	10	258	258	1.00	0.01	250
						200	200		I	200
2	20	Pacific Dr at Iredale St		EBL	20	2	2	1.00	0.94	0
	20		EB	EBT	20	111	111	1.00	0.94	105
	20	Count Date: 5/27/2015		EBR	20	2	2	1.00	0.94	0
	20			WBL	20	1	1	1.00	0.94	0
	20		WB	WBT	20	127	127	1.00	0.94	120
	20			WBR	20	8	8	1.00	0.94	5
	20	PM Peak Hour: 4:00 PM-5:00 PM		NBL	20	1	1	1.00	0.94	0
	20	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	20	0	0	1.00	0.94	0
	20			NBR	20	1	1	1.00	0.94	0
	20			SBL	20	9	9	1.00	0.94	10
	20	PHF:	SB	SBT	20	1	1	1.00	0.94	0
	20	0.89		SBR	20	3	3	1.00	0.94	5
			TEV	TEV	20	266	266			245
					-					
3	30	OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Stre	3	EBL	30	13	13	1.00	0.94	10
	30		EB	EBT	30	1	1	1.00	0.94	0
	30	Count Date: 5/27/2015		EBR	30	28	28	1.00	0.94	25
	30			WBL	30	1	1	1.00	0.94	0
	30		WB	WBT	30	2	2	1.00	0.94	0
	30			WBR	30	3	3	1.00	0.94	5
	30	PM Peak Hour: 4:00 PM-5:00 PM		NBL	30	50	50	1.00	0.94	45
	30	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	30	296	296	1.00	0.94	275
	30			NBR	30	2	2	1.00	0.94	0
	30			SBL	30	5	5	1.00	0.94	5
	30	PHF:	SB	SBT	30	238	238	1.00	0.94	225
	30	0.94		SBR	30	11	11	1.00	0.94	10
			TEV	TEV	30	650	650			600
4	40	OD 104/Et Stevens Live at NE Skingson Dr/C Main	1	EDI	40	4	4	1.01	0.00	F
4	40	OR 104/Ft Stevens Hwy at NE Skiparion DI/S Main			40	4	4	1.01	0.90	5
	40	Count Date: 0/26/2012	ED		40	142	142	1.01	0.90	140
	40	Count Date. 9/20/2013		EBR	40	11	11	1.01	0.90	75
	40		\M/D	WBL	40	203	203	1.01	0.98	200
	40		VVD	WDD	40	203	203	1.01	0.98	200
	40	DM Dook Hours A:45 DM 5:45 DM		WBK	40	00	00	1.01	0.98	00
	40			NDT	40	00	00	1.01	0.98	60
	40	PIVI PEAK HOUF USED: 4:00 PM-5:00 PM	INB	INBT	40	30	30	1.01	0.98	30
	40			NRK	40	157	157	1.01	0.98	155
	40		0.0	SBL	40	00	56	1.01	0.98	55
	40		28	SBI	40	54	54	1.01	0.98	55
	40	0.90		SBR	40	3	3	1.01	0.98	5
			IEV	IEV	40	1065	1065			1055
5	50	Warrenton-Astoria Hwy at SE Galena Ave		EBL	50	2	2	1.00	1.01	0
1			I		1					-

Job #: DKSA0000004 Subject: PM Turning Movement Volumes

Traffic adjustments

Subject.		ing movement volumes					closure			
						Existing Counts	Existing Counts	Base	AVERAGE	Average Peak Hour
							(with adjustments)	Year	ANNUAL	
	Synchro					1-Hr Volume	1-Hr Volume	Adjustment	Adjustment	1-Hr Volume
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Factor	Factor	PM Peak
				I	1					
	50		EB	EBT	50	444	444	1.00	1.01	450
	50	Count Date: 5/27/2015		EBR	50	3	3	1.00	1.01	5
	50			WBL	50	6	6	1.00	1.01	5
	50		WB	WBT	50	531	531	1.00	1.01	535
	50			WBR	50	2	2	1.00	1.01	0
	50	PM Peak Hour: 4:45 PM-5:45 PM		NBL	50	2	2	1.00	1.01	0
	50	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	50	0	0	1.00	1.01	0
	50			NBR	50	2	2	1.00	1.01	0
	50			SBL	50	1	1	1.00	1.01	0
	50	PHE	SB	SBT	50	0	0	1 00	1 01	0
	50	0.95		SBR	50	2	2	1.00	1.01	0
	00	0.00	TEV	TEV	50	005	995	1.00	1.01	005
					50	333	333			335
6	60	E Harbor St at Marlin Dr	1	EBL	60	0	0	1.00	1.01	0
	60		EB	FBT	60	374	354	1 00	1 01	360
	60	Count Date: 5/27/2015	25	FBR	60	77	97	1.00	1.01	100
	00	Count Date. 3/2/12013	-		00	11	51	1.00	1.01	100
	00			WDL	00	10	10	1.00	1.01	15
	60		WB	WBI	60	415	400	1.00	1.01	405
	60			WBR	60	0	0	1.00	1.01	0
	60	PM Peak Hour: 4:45 PM-5:45 PM		NBL	60	129	144	1.00	1.01	145
	60	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	60	0	0	1.00	1.01	0
	60			NBR	60	11	11	1.00	1.01	10
	60			SBL	60	0	0	1.00	1.01	0
	60	PHF:	SB	SBT	60	0	0	1.00	1.01	0
	60	0.96		SBR	60	0	0	1.00	1.01	0
			TEV	TEV	60	1022	1022			1035
7	70	E Harbor St at SE Neptune Dr		EBL	70	0	0	1.00	1.01	0
	70		EB	EBT	70	294	274	1.00	1.01	275
	70	Count Date: 5/27/2015		EBR	70	90	90	1.00	1.01	90
	70			WBL	70	84	84	1.00	1.01	85
	70	Signalized	WB	WBT	70	354	339	1.00	1.01	345
	70			WBR	70	0	0	1 00	1 01	0
	70	PM Peak Hour: 4:45 PM-5:45 PM	-	NBI	70	83	83	1.00	1.01	85
	70	PM Peak Hour Lised: 4:00 PM-5:00 PM	NB	NBT	70	0	0	1.00	1.01	0
	70		NB	NDD	70	65	65	1.00	1.01	65
	70				70	00	05	1.00	1.01	05
	70		0.0	SBL	70	0	0	1.00	1.01	0
	70	PHF:	5B	SBT	70	0	0	1.00	1.01	0
	70	0.95		SBR	70	0	0	1.00	1.01	0
			TEV	TEV	70	970	935			945
0	00	E Harber St at Veunsia Davi Diana Aaraa			00	20	20	1.00	1.04	25
ŏ	δU	E HAIDOI SUAL TOUND'S BAY MAZA ACCESS		EBL	80	30	30	1.00	1.01	35
1	δÚ		EB	ERI	80	320	300	1.00	1.01	305
	80	Count Date: 5/27/2015		EBR	80	13	13	1.00	1.01	15
	80			WBL	80	67	67	1.00	1.01	70
	80		WB	WBT	80	364	349	1.00	1.01	355
	80			WBR	80	21	21	1.00	1.01	20
	80	PM Peak Hour: 4:45 PM-5:45 PM		NBL	80	6	6	1.00	1.01	5
	80	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	80	8	8	1.00	1.01	10
	80		1	NBR	80	54	54	1.00	1.01	55
	80			SBL	80	46	46	1.00	1.01	45
	80	PHF:	SB	SBT	80	9	9	1.00	1.01	10
1	80	0.93		SBR	80	68	68	1.00	1.01	70
	50		TEV	TEV	80	1012	977	1.00	1.01	995
			1	L 'L'	50	1012	5/1			
9	90	E Harbor St at US 101 (signalized)		EBL	90	377	357	1.00	1.01	360
	90	,	EB	EBT	90	0	0	1.00	1.01	0
1			1	I	1 22		-			i č

Job #: DKSA0000004

Subject: PM Turning Movement Volumes

Traffic adjustments

,		•					ciosure			
						Existing Counts	Existing Counts	Base	AVERAGE	Average Peak Hour
						Existing sounds	(with adjustments)	Year		, woruge i ouk riour
	0					1.Hr Volumo	1-Hr Volumo	Adjustment	Adjustment	1. Hr Volumo
	Synchro	Interportion	Direction	Movement	Int ID	DM Dook	DM Dook	Factor	Factor	DM Dook
IN-S ID	U	Intersection	Direction	wovernent	INLID	PWIPeak	PWPeak	Factor	Factor	PWIPeak
	90	Count Date: 5/28/2015	1	EBR	90	35	35	1.00	1.01	35
	90			WBL	90	0	0	1.00	1.01	0
	90		WB	WBT	90	0	0	1.00	1.01	0
	90			WBR	90	0	0	1.00	1.01	0
	90	PM Peak Hour: 1:00 PM-5:00 PM		NBI	90 90	41	41	1.00	1.01	40
	30	PM Peak Hour Lload: 4:00 PM 5:00 PM	ND	NDT	00	917	41	1.00	1.01	40
	90	PM Peak Hour Used. 4.00 PM-5.00 PM	IND		90	017	131	1.00	1.01	745
	90			NBR	90	0	0	1.00	1.01	0
	90		0.0	SBL	90	5	5	1.00	1.01	5
	90	PHF:	SB	SBI	90	733	708	1.00	1.01	/15
	90	0.98		SBR	90	400	385	1.00	1.01	390
			TEV	TEV	90	2408	2268			2290
10	100	CIM and St/CIM Condenie Ave	1	EDI	100	0	0	1.00	0.00	0
10	100	Sw 2nd SVSW Gardenia Ave	F D	EDL	100	0	0	1.00	0.96	0
	100		ED	EDI	100		11	1.00	0.96	10
	100	Count Date: 5/28/2015		EBR	100	3	3	1.00	0.98	5
	100			WBL	100	11	11	1.00	0.98	10
	100		WB	WBT	100	19	19	1.00	0.98	20
	100			WBR	100	7	7	1.00	0.98	5
	100	PM Peak Hour: 4:45 PM-5:45 PM		NBL	100	2	2	1.00	0.98	0
	100	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	100	2	2	1.00	0.98	0
	100			NBR	100	5	5	1.00	0.98	5
	100			SBL	100	4	4	1.00	0.98	5
	100	PHF:	SB	SBT	100	1	1	1.00	0.98	0
	100	0.84		SBR	100	0	0	1.00	0.98	0
			TEV	TEV	100	65	65			60
11	110	OR 104/S Main Ave at SW 2nd St		EBL	110	65	65	1.00	1.01	65
	110		EB	EBT	110	5	5	1.00	1.01	5
	110	Count Date: 5/27/2015		EBR	110	43	43	1.00	1.01	45
	110			WBL	110	2	2	1.00	1.01	0
	110		WB	WBT	110	3	3	1.00	1.01	5
	110			WBR	110	6	6	1.00	1.01	5
	110	PM Peak Hour: 4:00 PM-5:00 PM		NBI	110	33	33	1 00	1 01	35
	110	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	110	247	247	1 00	1 01	250
	110			NBR	110	5	5	1.00	1.01	5
	110			SBI	110	5	5	1.00	1.01	5
	110	DHE	SB	CDL	110	262	262	1.00	1.01	265
	110	0.02	00	CDD	110	65	65	1.00	1.01	65
	110	0.52			110	744	744	1.00	1.01	750
						741	/41			750
10	120	US 101 at SE Nentune Dr. (signalized)		EDI	120	156	156	1.00	1.01	160
12	120	oo to tat on treptune Di (Signalizeu)	EP	LDL	120	150	150	1.00	1.01	100
1	120	Court Data: 5/28/2015			120	100	100	1.00	1.01	105
	120	Count Date: 5/20/2015		EBK	120	163	163	1.00	1.01	105
1	120			WBL	120	0	0	1.00	1.01	0
	120		WB	WBI	120	0	0	1.00	1.01	0
	120		ļ	WBR	120	0	0	1.00	1.01	0
	120	PM Peak Hour: 4:15 PM-5:15 PM		NBL	120	147	147	1.00	1.01	150
1	120	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	120	686	606	1.00	1.01	615
	120			NBR	120	0	0	1.00	1.01	0
	120			SBL	120	0	0	1.00	1.01	0
	120	PHF:	SB	SBT	120	664	639	1.00	1.01	645
	120	0.94		SBR	120	104	104	1.00	1.01	105
			TEV	TEV	120	1920	1815			1840
13	130	US 101 at Marlin Dr (signalized)		EBL	130	29	29	1.02	0.98	30
1	130		EB	EBT	130	67	67	1.02	0.98	65

Job #: DKSA0000004

Subject: PM Turning Movement Volumes

Traffic adjustments

Subject.		ing movement volumes					closure			
						Existing Counts	Existing Counts	Basa	AVERAGE	Avorago Doak Hour
						Existing Counts	(with adjustments)	Voar		Average Feak Hour
	<u> </u>					1 Hr Volumo	(with adjustments)	Adjustment	Adjustment	1 Hr Volumo
	Synchro	Intersection	Direction	Movement	Int ID	PM Peak	DM Deak	Factor	Factor	PM Peak
N=0 ID	ID	intersection	Direction	Wovernent		TWITCAR	TWITCOK	1 actor	1 actor	TWTEak
	130	Count Date: 9/26/2013		EBR	130	105	105	1.02	0.98	105
	130			WBL	130	57	57	1.02	0.98	55
	130		WB	WBT	130	97	97	1.02	0.98	95
	130			WBR	130	87	87	1.02	0.98	85
	130	PM Peak Hour: 4:15 PM-5:15 PM		NBL	130	101	101	1.02	0.98	100
	130	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	130	528	528	1.02	0.98	525
	130			NBR	130	14	14	1.02	0.98	15
	130			SBL	130	65	65	1.02	0.98	65
	130	PHF:	SB	SBT	130	563	563	1.02	0.98	560
	130	0.91		SBR	130	26	26	1.02	0.98	25
			TEV	TEV	130	1739	1739		1	1725
			1	50	1.10	2		4.00	4.04	
14	140	NW Ridge Rd at SW 9th St	50	EBL	140	0	0	1.00	1.01	0
	140		EB	EBI	140	0	0	1.00	1.01	0
	140	Count Date: 5/27/2015		EBR	140	0	0	1.00	1.01	0
	140			WBL	140	12	12	1.00	1.01	10
	140		WB	WBD	140	0	0	1.00	1.01	0
	140			WBR	140	66	66	1.00	1.01	65
	140	PM Peak Hour: 4:45 PM-5:45 PM	ND	NBL	140	0	0	1.00	1.01	0
	140	PM Peak Hour Used: 4:00 PM-5:00 PM	IND	INBT	140	59	59	1.00	1.01	60
	140			NBR	140	9	9	1.00	1.01	10
	140		0.0	SBL	140	17	17	1.00	1.01	15
	140		28	5B1	140	48	48	1.00	1.01	50
	140	0.84	TEV	SBR	140	0	0	1.00	1.01	0
			ILV	120	140	211	211			210
15	150	SW 9th St at OR 104/Et Stevens Hwy	1	EBL	150	33	33	1.00	1.01	35
-	150	· · · · · · · · · · · · · · · · · · ·	EB	EBT	150	1	1	1.00	1.01	0
	150	Count Date: 5/27/2015		EBR	150	40	40	1.00	1.01	40
	150			WBL	150	0	0	1.00	1.01	0
	150		WB	WBT	150	1	1	1.00	1.01	0
	150			WBR	150	2	2	1.00	1.01	0
	150	PM Peak Hour: 4:00 PM-5:00 PM		NBL	150	56	56	1.00	1.01	55
	150	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	150	231	231	1.00	1.01	235
	150			NBR	150	1	1	1.00	1.01	0
	150			SBL	150	2	2	1.00	1.01	0
	150	PHF:	SB	SBT	150	199	199	1.00	1.01	200
	150	0.95		SBR	150	76	76	1.00	1.01	75
			TEV	TEV	150	642	642			640
					-			1		
16	160	OR 104S/Ft Stevens Hwy Spur at US 101		EBL	160	0	0	1.00	1.01	0
	160		EB	EBT	160	0	0	1.00	1.01	0
	160	Count Date: 5/27/2015		EBR	160	5	5	1.00	1.01	5
	160			WBL	160	0	0	1.00	1.01	0
	160		WB	WBT	160	0	0	1.00	1.01	0
	160			WBR	160	11	11	1.00	1.01	10
	160	PM Peak Hour: 4:30 PM-5:30 PM		NBL	160	11	11	1.00	1.01	10
	160	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	160	714	669	1.00	1.01	675
	160			NBR	160	16	16	1.00	1.01	15
	160			SBL	160	1	1	1.00	1.01	0
	160	PHF:	SB	SBT	160	695	685	1.00	1.01	695
	160	0.91		SBR	160	110	95	1.00	1.01	95
			TEV	TEV	160	1563	1493			1505
1-	192				4=0	10	10	4.00	0.01	10
17	170	US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hw) 	EBL	170	10	10	1.00	0.94	10
	170		EB	EBT	170	14	14	1.00	0.94	15

Job #: DKSA0000004

Subject: PM Turning Movement Volumes

Traffic adjustments due to bridge

ie

							olocalo			
						Existing Counts	Existing Counts	Base	AVERAGE	Average Peak Hour
						-	(with adjustments)	Year	ANNUAL	-
	Synchro					1-Hr Volume	1-Hr Volume	Adjustment	Adjustment	1-Hr Volume
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Factor	Factor	PM Peak
	170	Count Date: 5/27/2015		EBR	170	0	0	1.00	0.94	0
	170	Count Date. 5/2//2013		WBL	170	0	0	1.00	0.94	0
	170		WB	WBT	170	4	4	1.00	0.94	5
	170			WBR	170	166	196	1.00	0.94	185
	170	PM Peak Hour: 4:00 PM-5:00 PM		NBL	170	0	0	1.00	0.94	0
	170	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	170	1	1	1.00	0.94	0
	170			NBR	170	0	0	1.00	0.94	0
	170			SBL	170	73	123	1.00	0.94	115
	170	PHF:	SB	SBT	170	1	1	1.00	0.94	0
	170	0.90		SBR	170	9	9	1.00	0.94	10
			TEV	TEV	170	278	358			340
	100		1				-			-
18	180	Delaura Beach Ln at Ridge Rd	50	EBL	180	3	3	1.00	1.01	5
	180	0	EB	EBI	180	12	12	1.00	1.01	10
	180	Count Date: 5/27/2015		EBR	180	0	0	1.00	1.01	U
	100	intersection has unconventional	\M/D	WDL	100	3 10	о 10	1.00	1.01	5
	100	geometric configuration	VVD	WDI	100	19	19	1.00	1.01	20
	180	PM Peak Hour: 4:45 PM-5:45 PM		NBI	180	1	1	1.00	1.01	5
	180	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	180	0	0	1.00	1.01	0
	180		ne -	NBR	180	0	0	1.00	1.01	0
	180			SBL	180	42	42	1.00	1.01	45
	180	PHF:	SB	SBT	180	12	12	1.00	1.01	10
	180	0.86		SBR	180	4	4	1.00	1.01	5
			TEV	TEV	180	162	162			170
			-							• •
19	190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens H		EBL	190	0	0	1.02	0.98	0
19	190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens H	EB	EBL EBT	190 190	0 0	0 0	1.02 1.02	0.98 0.98	0 0
19	190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013	EB	EBL EBT EBR	190 190 190	0 0 0	0 0 0	1.02 1.02 1.02	0.98 0.98 0.98	0 0 0
19	190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013	EB	EBL EBT EBR WBL	190 190 190 190	0 0 0 64	0 0 0 64	1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98	0 0 0 65
19	190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013	EB	EBL EBT EBR WBL WBT	190 190 190 190 190	0 0 64 0	0 0 64 0	1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98	0 0 65 0
19	190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013	EB	EBL EBT EBR WBL WBT WBR	190 190 190 190 190 190	0 0 64 0 142	0 0 64 0 142	1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 65 0 140
19	190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour: 4:00 PM 5:00 PM	EB WB	EBL EBT WBL WBT WBR NBL	190 190 190 190 190 190 190	0 0 64 0 142 0	0 0 64 0 142 0	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 65 0 140 0
19	190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM	EB WB NB	EBL EBT WBL WBT WBR NBL NBT	190 190 190 190 190 190 190 190	0 0 64 0 142 0 121 56	0 0 64 0 142 0 121 56	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 65 0 140 0 120 55
19	190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM	EB WB NB	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBI	190 190 190 190 190 190 190 190 190	0 0 64 0 142 0 121 56 106	0 0 64 0 142 0 121 56 106	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 65 0 140 0 120 55 105
19	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF:	EB WB NB	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT	190 190 190 190 190 190 190 190 190 190	0 0 64 0 142 0 121 56 106 103	0 0 64 0 142 0 121 56 106 103	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 65 0 140 0 120 55 105 100
19	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88	EB WB NB SB	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR	190 190 190 190 190 190 190 190 190 190	0 0 64 0 142 0 121 56 106 103 0	0 0 64 0 142 0 121 56 106 103 0	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 65 0 140 0 120 55 105 100 0
19	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88	EB WB NB SB TEV	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR TEV	190 190 190 190 190 190 190 190 190 190	0 0 64 0 142 0 121 56 106 103 0 592	0 0 64 0 142 0 121 56 106 103 0 592	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 65 0 140 0 120 55 105 100 0 585
19	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88	EB WB NB SB TEV	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR TEV	190 190 190 190 190 190 190 190 190 190	0 0 0 64 0 142 0 121 56 106 103 0 592	0 0 64 0 142 0 121 56 106 103 0 592	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 105 100 0 585
19	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste	EB WB NB SB TEV	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR TEV EBL	190 190 190 190 190 190 190 190 190 190	0 0 0 64 0 142 0 121 56 106 103 0 592 47	0 0 0 64 0 142 0 121 56 106 103 0 592	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 100 0 585 50
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste	EB WB NB SB TEV EB	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR TEV	190 190 190 190 190 190 190 190 190 190	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 105 100 0 585
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015	EB WB NB SB TEV EB	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR TEV EBL EBT EBR	190 190 190 190 190 190 190 190 190 190	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 19	0 0 64 0 142 0 121 56 106 103 0 592 47 0 19	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 105 100 0 585 50 0 20
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015	EB WB NB SB TEV EB	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR TEV EBL EBT EBR WBL	190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 200 200 200 200 200 200	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 19 0	0 0 64 0 142 0 121 56 106 103 0 592 47 0 19 0	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 100 0 585 50 0 20 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015	EB WB NB SB TEV EB WB	EBL EBT EBR WBL WBT WBR NBL NBT SBL SBT SBR EBL EBT EBR WBL WBT	190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 200 200 200 200 200 200	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 19 0 0 0	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 19 0 0 0	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 100 55 105 100 0 585 50 0 20 0 0 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015	EB WB NB SB TEV EB WB	EBL EBT EBR WBL WBT WBR NBL SBL SBT SBR TEV EBL EBT EBR WBL WBT WBR	190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 200 200 200 200 200 200 200 200 200	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 19 0 0 0 0 0	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 100 0 585 50 0 20 0 0 0 0 0 0 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015 PM Peak Hour: 4:00 PM-5:00 PM	EB WB NB SB TEV EB WB	EBL EBT EBR WBL WBT WBR NBL NBT SBL SBT SBR TEV EBL EBT EBR WBL WBT WBR	190 190 190 190 190 190 190 190 190 190	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 16	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 16	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 105 100 0 585 50 0 20 0 0 0 0 15
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015 PM Peak Hour: 4:00 PM-5:00 PM PM Peak Hour: 4:00 PM-5:00 PM	EB WB NB SB TEV EB WB NB	EBL EBT EBR WBL WBT WBR NBL SBL SBT SBR TEV EBL EBT EBR WBL WBT WBR NBL NBT	190 190 190 190 190 190 190 190 190 190 190 190 190 200	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 16 101	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 16 101 2	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 100 0 585 50 0 20 0 0 0 15 100 2 0 0 0 0 0 0 0 0 0 0 0 0 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015 PM Peak Hour: 4:00 PM-5:00 PM PM Peak Hour Used: 4:00 PM-5:00 PM	EB WB NB SB TEV EB WB NB	EBL EBT EBR WBL WBT WBR NBL NBT SBL SBT SBR TEV EBL EBT EBR WBL WBT WBR NBL NBT NBT	190 190 190 190 190 190 190 190 190 190 190 190 190 200	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 0 0 0 0 0 0 0 0 0 16 101 0 0	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 16 101 0 6	1.02 1.00 1.00	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 100 0 585 50 0 20 0 0 0 0 15 100 0 0 0 0 0 0 0 0 0 0 0 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015 PM Peak Hour: 4:00 PM-5:00 PM PM Peak Hour Used: 4:00 PM-5:00 PM	EB WB NB SB TEV EB WB NB	EBL EBT EBR WBL WBR NBL NBT SBL SBT SBR TEV EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SCT	190 190 190 190 190 190 190 190 190 190 190 190 190 200	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 0 16 101 0 0 81	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 0 16 101 0 0 81	1.02 1.00 1.00	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 100 0 585 50 0 20 0 0 0 0 0 15 100 0 0 0 0 0 0 0 0 0 0 0 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015 PM Peak Hour: 4:00 PM-5:00 PM PM Peak Hour Used: 4:00 PM-5:00 PM	EB WB NB SB TEV EB WB NB SB	EBL EBT EBR WBL WBT WBR NBL NBT SBL SBT EBR EBT EBR WBL WBT WBL WBT WBR NBL NBT NBR SBL SBT SBT SBT	190 190 190 190 190 190 190 190 190 190 190 190 190 200	0 0 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 0 0 0 16 101 0 0 81 57	0 0 0 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 0 0 0 16 101 0 0 81 57	1.02 1.00 1.00	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 0 140 0 120 55 105 100 0 585 50 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015 PM Peak Hour: 4:00 PM-5:00 PM PM Peak Hour Used: 4:00 PM-5:00 PM PM Peak Hour Used: 4:00 PM-5:00 PM	EB WB NB SB TEV EB WB NB SB TEV	EBL EBT EBR WBL WBT NBL NBT SBL SBT SBR EBL EBT EBR WBL WBT WBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBT SBR	190 190 190 190 190 190 190 190 190 190 190 190 190 200	0 0 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 0 592 1 1 1 1 1 1 1 1	1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 0 65 0 140 0 120 55 105 100 0 585 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015 PM Peak Hour: 4:00 PM-5:00 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.94	EB WB NB SB TEV EB WB NB SB TEV	EBL EBT EBR WBL WBT WBR NBL SBL SBT SBR TEV EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBL SBT SBR	190 190 190 190 190 190 190 190 190 190 190 190 190 200	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 19 0 0 0 0 0 0 16 101 0 81 57 321	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 592 47 0 19 0 0 0 0 16 101 0 0 81 57 321	1.02 1.00 1.00	0.98 0.98	0 0 0 65 0 140 0 120 55 105 100 0 585 50 0 20 0 0 0 0 0 0 15 100 0 0 0 0 0 0 0 0 0 0 0 0
20	190 190 190 190 190 190 190 190 190 190	OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens F Count Date: 9/26/2013 PM Peak Hour: 4:45 PM-5:45 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.88 SW 18th St/Delaura Beach Ln at S Main Ave/Ft Ste Count Date: 5/27/2015 PM Peak Hour: 4:00 PM-5:00 PM PM Peak Hour Used: 4:00 PM-5:00 PM PHF: 0.94 SE Ensign Ln at US 101 (signalized)	EB WB NB SB TEV EB WB NB SB TEV	EBL EBT EBR WBL WBT WBR NBL SBL SBT SBR TEV EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBR SBR TEV	190 190 190 190 190 190 190 190 190 190 190 190 190 200	0 0 0 142 0 121 56 106 103 0 592 47 0 592 47 0 592 47 0 19 0 0 0 0 16 101 0 0 0 81 57 321	0 0 0 64 0 142 0 121 56 106 103 0 592 47 0 592 47 0 592 47 0 19 0 0 0 0 0 16 101 0 0 81 57 321	1.02 1.00 1.00	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	0 0 0 65 0 140 0 120 55 105 100 0 555 50 0 50 0 20 0 0 0 0 0 0 0 0 0

Job #: DKSA0000004

Subject: PM Turning Movement Volumes

Traffic adjustments

due to bridge closure

						Existing Counts	Existing Counts (with adjustments)	Base Year	AVERAGE ANNUAL	Average Peak Hour
	Synchro					1-Hr Volume	1-Hr Volume	Adjustment	Adjustment	1-Hr Volume
N-S ID	ID	Intersection	Direction	Movement	Int ID	PM Peak	PM Peak	Factor	Factor	PM Peak
	210	Count Date: 5/28/2015		EBR	210	72	72	1.00	1.01	75
	210			WBL	210	125	165	1.00	1.01	165
	210		WB	WBT	210	124	174	1.00	1.01	175
	210			WBR	210	169	169	1.00	1.01	170
	210	PM Peak Hour: 4:15 PM-5:15 PM		NBL	210	73	73	1.00	1.01	75
	210	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	210	402	377	1.00	1.01	380
	210			NBR	210	88	128	1.00	1.01	130
	210		0.0	SBL	210	192	192	1.00	1.01	195
	210	PHF:	28	SBI	210	486	476	1.00	1.01	480
	210	0.91	TEV	SBR TEV	210	0/ 2133	87 2263	1.00	1.01	90
				124	210	2155	2203			2230
22	220	SE Ensign Ln at SE 19th St	1	EBL	220	3	3	1.00	0.98	5
	220	, and the second s	EB	EBT	220	60	170	1.00	0.98	165
	220	Count Date: 5/27/2015		EBR	220	52	52	1.00	0.98	50
	220			WBL	220	4	4	1.00	0.98	5
	220		WB	WBT	220	49	139	1.00	0.98	135
	220			WBR	220	7	7	1.00	0.98	5
	220	PM Peak Hour: 4:00 PM-5:00 PM		NBL	220	47	47	1.00	0.98	45
	220	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBT	220	10	10	1.00	0.98	10
	220			NBR	220	2	2	1.00	0.98	0
	220		CD.	SBL	220	4	4	1.00	0.98	5
	220	РПР. 0.88	38	SBI	220	33	33	1.00	0.90	30
	220	0.00	TEV	TEV	220	278	478	1.00	0.30	460
						210	410			400
23	230	SE Ensign Ln at US 101Bus/Warrenton-Astoria Hw		EBL	230	2	2	1.00	1.00	5
	230		EB	EBT	230	187	187	1.00	1.00	190
	230	Count Date: 10/21/2015		EBR	230	0	0	1.00	1.00	0
	230			WBL	230	0	0	1.00	1.00	0
	230		WB	WBT	230	120	120	1.00	1.00	120
	230			WBR	230	50	50	1.00	1.00	50
	230	PM Peak Hour: 4:30 PM-5:30 PM	ND	NBL	230	0	0	1.00	1.00	0
	230	PM Peak Hour Used: 4:00 PM-5:00 PM	NB	NBI	230	0	0	1.00	1.00	0
	230				230	84	84	1.00	1.00	85
	230	DHE	SB	SBT	230	0	0	1.00	1.00	0
	230	0.79	05	SBR	230	10	10	1.00	1.00	10
			TEV	TEV	230	453	453		1	460
24	240	US 101 at SE Dolphin Ave		EBL	240	0	0	1.00	1.01	0
	240		EB	EBT	240	0	0	1.00	1.01	0
	240	Count Date: 5/27/2015		EBR	240	0	0	1.00	1.01	0
	240			WBL	240	7	7	1.00	1.01	5
	240		WB	WBD	240	0	0	1.00	1.01	0
	∠40 240	PM Deak Hour: 9:15 AM 10:15 AM		WBK	240	52	52	1.00	1.01	55
	240 2/10	PM Peak Hour I lsed: 4:00 PM_5:00 PM	NR	NRT	240	520	520	1.00	1.01	525
	240			NBR	240	4	4	1.00	1.01	5
	240			SBL	240	29	29	1.00	1.01	30
	240	PHF:	SB	SBT	240	582	612	1.00	1.01	620
	240	0.89		SBR	240	0	0	1.00	1.01	0
			TEV	TEV	240	1194	1224		0.72	1240

Appendix D

Synchro Worksheets

	≯	\mathbf{r}	1	†	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		1	7	*	*	1
Traffic Volume (veh/h)	0	5	15	940	985	120
Future Volume (Veh/h)	0	5	15	940	985	120
Sign Control	Stop	Ŭ	10	Free	Free	120
Grade	0%			0%	0%	
Peak Hour Factor	0.91	0 91	0.91	0.91	0.91	0.91
Hourly flow rate (yph)	0.01	5	16	1033	1082	132
Pedestrians	Ū	U	10	1000	1002	102
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veb)				NULLE	NULLE	
Linstream signal (ff)						
nX platoon upblocked						
vC conflicting volume	21/17	1082	1082			
vC1 stage 1 confivel	2147	1002	1002			
vC1, stage 1 contivol						
	01/7	1000	1000			
tC single (s)	2147	6.2	1002			
tC, Single (S)	0.4	0.2	4.1			
IC, Z Stage (S)	2 5	2.2	2.2			
IF (S)	3.0	3.3	2.2			
pu queue free %	100	90	90			
civi capacity (ven/n)	53	207	052			
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2	
Volume Total	5	16	1033	1082	132	
Volume Left	0	16	0	0	0	
Volume Right	5	0	0	0	132	
cSH	267	652	1700	1700	1700	
Volume to Capacity	0.02	0.02	0.61	0.64	0.08	
Queue Length 95th (ft)	1	2	0	0	0	
Control Delay (s)	18.7	10.7	0.0	0.0	0.0	
Lane LOS	С	В				
Approach Delay (s)	18.7	0.2		0.0		
Approach LOS	С					
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliz	ation		66.3%	IC	CU Level o	of Service
Analysis Period (min)			15			

	≯	\rightarrow	1	1	↓	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	5	1	5	*	•	1		
Traffic Volume (vph)	460	45	55	925	910	495		
Future Volume (vph)	460	45	55	925	910	495		
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750		
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	5.4		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	1630	1488	1630	1733	1750	1488		
Flt Permitted	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (perm)	1630	1488	1630	1733	1750	1488		
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98		
Adj. Flow (vph)	469	46	56	944	929	505		
RTOR Reduction (vph)	0	32	0	0	0	82		
Lane Group Flow (vph)	469	14	56	944	929	423		
Heavy Vehicles (%)	2%	0%	2%	1%	0%	0%		
Turn Type	Prot	Perm	Prot	NA	NA	pt+ov		
Protected Phases	8		1	6	2	28		
Permitted Phases	-	8		-		-		
Actuated Green, G (s)	29.7	29.7	7.3	60.4	48.6	83.7		
Effective Green, q (s)	30.2	30.2	7.8	61.8	50.0	83.7		
Actuated q/C Ratio	0.30	0.30	0.08	0.62	0.50	0.84		
Clearance Time (s)	4.5	4.5	4.5	5.4	5.4			
Vehicle Extension (s)	2.5	2.5	2.5	4.7	4.7			
Lane Grp Cap (vph)	492	449	127	1070	875	1245		
v/s Ratio Prot	c0.29		0.03	c0.54	c0.53	0.28		
v/s Ratio Perm		0.01						
v/c Ratio	0.95	0.03	0.44	0.88	1.06	0.34		
Uniform Delay, d1	34.2	24.6	44.0	16.0	25.0	1.9		
Progression Factor	1.00	1.00	0.98	0.92	1.00	1.00		
Incremental Delay, d2	28.9	0.0	1.4	8.5	48.2	0.1		
Delay (s)	63.1	24.6	44.6	23.3	73.2	2.0		
Level of Service	E	С	D	С	E	А		
Approach Delay (s)	59.7			24.5	48.1			
Approach LOS	E			С	D			
Intersection Summary								
HCM 2000 Control Delav			42.1	H	CM 2000	Level of Service	 D	
HCM 2000 Volume to Capa	acity ratio		1.05				_	
Actuated Cycle Length (s)	.,		100.0	S	um of los	t time (s)	13.9	
Intersection Capacity Utiliza	ation		87.2%		CU Level	of Service	E	
Analysis Period (min)			15				_	
c Critical Lane Group								

	٭	\rightarrow	1	1	↓	1			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	5	1	5	•	•	1			
Traffic Volume (vph)	200	210	185	780	820	135			
Future Volume (vph)	200	210	185	780	820	135			
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750			
Total Lost time (s)	4.5	4.5	4.5	5.4	5.4	5.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)	1646	1488	1646	1733	1750	1473			
Flt Permitted	0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (perm)	1646	1488	1646	1733	1750	1473			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94			
Adj. Flow (vph)	213	223	197	830	872	144			
RTOR Reduction (vph)	0	183	0	0	0	27			
Lane Group Flow (vph)	213	40	197	830	872	117			
Heavy Vehicles (%)	1%	0%	1%	1%	0%	1%			
Turn Type	Prot	Perm	Prot	NA	NA	Perm			
Protected Phases	8		1	6	2				
Permitted Phases	-	8				2			
Actuated Green, G (s)	17.9	17.9	16.7	72.2	51.0	51.0			
Effective Green, g (s)	17.9	17.9	16.7	72.2	51.0	51.0			
Actuated q/C Ratio	0.18	0.18	0.17	0.72	0.51	0.51			
Clearance Time (s)	4.5	4.5	4.5	5.4	5.4	5.4			
Vehicle Extension (s)	2.5	2.5	2.5	4.8	4.8	4.8			
Lane Grp Cap (vph)	294	266	274	1251	892	751			
v/s Ratio Prot	c0.13		0.12	c0.48	c0.50				
v/s Ratio Perm		0.03				0.08			
v/c Ratio	0.72	0.15	0.72	0.66	0.98	0.16			
Uniform Delay, d1	38.7	34.6	39.4	7.4	23.9	13.0			
Progression Factor	0.99	0.95	0.87	1.47	1.71	2.38			
Incremental Delay, d2	8.0	0.2	4.1	1.4	12.3	0.1			
Delay (s)	46.3	33.0	38.3	12.3	53.1	31.1			
Level of Service	D	С	D	В	D	С			
Approach Delay (s)	39.5			17.3	50.0				
Approach LOS	D			В	D				
Intersection Summarv									
HCM 2000 Control Delay			34.6	Н	CM 2000	Level of Service	e .	C	
HCM 2000 Volume to Cana	acity ratio		0.88		000		-	Ŭ	
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)		14.4	
Intersection Capacity Utiliza	ation		82.0%		CU Level	of Service		E	
Analysis Period (min)			15					_	
c Critical Lane Group									

HCM Signalized Intersection Capacity Analysis 130: US 101 & Marlin Ave

	٦	→	$\mathbf{\hat{z}}$	4	+	•	٠	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	ĥ		5	1.		5	1.		5	1.	
Traffic Volume (vph)	45	85	130	70	120	110	125	810	20	80	905	45
Future Volume (vph)	45	85	130	70	120	110	125	810	20	80	905	45
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.5	4.5		4.5	4.5		4.5	5.4		4.5	5.4	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.91		1.00	0.93		1.00	1.00		1.00	0.99	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1525	1506		1662	1497		1421	1692		1630	1648	
Flt Permitted	0.31	1.00		0.35	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (perm)	495	1506		609	1497		1421	1692		1630	1648	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	49	93	143	77	132	121	137	890	22	88	995	49
RTOR Reduction (vph)	0	58	0	0	35	0	0	1	0	0	2	0
Lane Group Flow (vph)	49	178	0	77	218	0	137	911	0	88	1042	0
Heavy Vehicles (%)	9%	2%	8%	0%	9%	8%	17%	3%	4%	2%	5%	14%
Turn Type	Perm	NA		Perm	NA		Prot	NA		Prot	NA	
Protected Phases		8			4		1	6		5	2	
Permitted Phases	8			4								
Actuated Green, G (s)	18.2	18.2		18.2	18.2		12.2	58.6		8.8	55.2	
Effective Green, g (s)	18.2	18.2		18.2	18.2		12.2	58.6		8.8	55.2	
Actuated g/C Ratio	0.18	0.18		0.18	0.18		0.12	0.59		0.09	0.55	
Clearance Time (s)	4.5	4.5		4.5	4.5		4.5	5.4		4.5	5.4	
Vehicle Extension (s)	2.5	2.5		2.5	2.5		2.5	4.5		2.5	4.5	
Lane Grp Cap (vph)	90	274		110	272		173	991		143	909	
v/s Ratio Prot		0.12			c0.15		c0.10	c0.54		0.05	c0.63	
v/s Ratio Perm	0.10			0.13								
v/c Ratio	0.54	0.65		0.70	0.80		0.79	0.92		0.62	1.15	
Uniform Delay, d1	37.1	37.9		38.3	39.2		42.7	18.6		44.0	22.4	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.12	0.62	
Incremental Delay, d2	5.2	4.6		16.4	15.0		20.9	13.5		3.6	73.4	
Delay (s)	42.4	42.6		54.7	54.2		63.5	32.1		52.9	87.3	
Level of Service	D	D		D	D		E	С		D	F	
Approach Delay (s)		42.5			54.3			36.2			84.6	
Approach LOS		D			D			D			F	
Intersection Summary												
HCM 2000 Control Delay			58.6	Н	CM 2000	Level of S	Service		E			
HCM 2000 Volume to Capac	city ratio		1.02									
Actuated Cycle Length (s)	Actuated Cycle Length (s) 100				um of lost	time (s)			14.4			
Intersection Capacity Utilization 97.1%					CU Level of	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 210: US 101 & Ensign Ln

	٦	→	\mathbf{F}	4	+	*	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ef 👘		ሻሻ	†	1	٦	^	1	ኘ	A	
Traffic Volume (vph)	185	265	90	210	225	215	95	575	165	245	635	110
Future Volume (vph)	185	265	90	210	225	215	95	575	165	245	635	110
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	5.0	5.0		5.0	5.0	5.0	5.0	6.0	6.0	5.0	6.0	
Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	
Frt	1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.98	
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1662	1671		3225	1750	1488	1662	3292	1473	1662	3219	
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1662	1671		3225	1750	1488	1662	3292	1473	1662	3219	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	203	291	99	231	247	236	104	632	181	269	698	121
RTOR Reduction (vph)	0	13	0	0	0	148	0	0	121	0	15	0
Lane Group Flow (vph)	203	377	0	231	247	88	104	632	60	269	804	0
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%	0%	1%	1%	0%	1%	1%
Turn Type	Prot	NA		Prot	NA	Perm	Prot	NA	Perm	Prot	NA	
Protected Phases	3	8		7	4		1	6		5	2	
Permitted Phases						4			6			
Actuated Green, G (s)	5.1	22.4		5.1	22.4	22.4	5.1	26.6	26.6	5.1	26.6	
Effective Green, g (s)	5.1	22.4		5.1	22.4	22.4	5.1	26.6	26.6	5.1	26.6	
Actuated g/C Ratio	0.06	0.28		0.06	0.28	0.28	0.06	0.33	0.33	0.06	0.33	
Clearance Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	6.0	6.0	5.0	6.0	
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.5	2.5	4.8	4.8	2.5	4.8	
Lane Grp Cap (vph)	105	466		205	488	415	105	1091	488	105	1067	
v/s Ratio Prot	c0.12	c0.23		0.07	0.14		0.06	0.19		c0.16	c0.25	
v/s Ratio Perm						0.06			0.04			
v/c Ratio	1.93	0.81		1.13	0.51	0.21	0.99	0.58	0.12	2.56	0.75	
Uniform Delay, d1	37.6	26.9		37.6	24.3	22.1	37.5	22.2	18.7	37.6	23.9	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	452.9	9.7		101.1	0.6	0.2	84.6	1.1	0.2	729.9	3.6	
Delay (s)	490.5	36.6		138.7	24.9	22.3	122.1	23.3	18.9	767.5	27.5	
Level of Service	F	D		F	С	С	F	С	В	F	С	
Approach Delay (s)		192.0			60.8			33.6			210.4	
Approach LOS		F			E			С			F	
Intersection Summary												
HCM 2000 Control Delay			125.9	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		1.03									
Actuated Cycle Length (s)			80.2	S	um of lost	t time (s)			21.0			
Intersection Capacity Utilizat	77.1%	IC	U Level	of Service			D					
Analysis Period (min)	15											
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 220: 19th St & Ensign Ln

1117/2010	7/1	4/201	6
-----------	-----	-------	---

	٦	-	\mathbf{i}	∢	+	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	*	1	5	*	1		4			4	-
Traffic Volume (vph)	5	215	65	5	170	10	60	10	5	10	10	40
Future Volume (vph)	5	215	65	5	170	10	60	10	5	10	10	40
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00			1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85		0.99			0.91	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00		0.96			0.99	
Satd. Flow (prot)	1662	1620	1430	1662	1750	1488		1555			1578	
Flt Permitted	0.68	1.00	1.00	0.68	1.00	1.00		0.77			0.96	
Satd. Flow (perm)	1186	1620	1430	1186	1750	1488		1247			1521	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	6	244	74	6	193	11	68	11	6	11	11	45
RTOR Reduction (vph)	0	0	55	0	0	8	0	4	0	0	27	0
Lane Group Flow (vph)	6	244	19	6	193	3	0	81	0	0	40	0
Heavy Vehicles (%)	0%	8%	4%	0%	0%	0%	9%	0%	0%	0%	0%	0%
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		8			4			6			2	
Permitted Phases	8		8	4		4	6			2		
Actuated Green, G (s)	5.9	5.9	5.9	5.9	5.9	5.9		9.4			9.4	
Effective Green, g (s)	5.9	5.9	5.9	5.9	5.9	5.9		9.4			9.4	
Actuated g/C Ratio	0.25	0.25	0.25	0.25	0.25	0.25		0.40			0.40	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	4.0		4.0			4.0	
Vehicle Extension (s)	2.5	2.5	2.5	2.5	2.5	2.5		2.5			2.5	
Lane Grp Cap (vph)	300	410	362	300	443	376		503			613	
v/s Ratio Prot		c0.15			0.11							
v/s Ratio Perm	0.01		0.01	0.01		0.00		c0.07			0.03	
v/c Ratio	0.02	0.60	0.05	0.02	0.44	0.01		0.16			0.07	
Uniform Delay, d1	6.5	7.6	6.6	6.5	7.3	6.5		4.4			4.3	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.00			1.00	
Incremental Delay, d2	0.0	1.9	0.0	0.0	0.5	0.0		0.1			0.0	
Delay (s)	6.5	9.6	6.6	6.5	7.8	6.5		4.5			4.3	
Level of Service	A	A	A	A	A	A		A			A	
Approach Delay (s)		8.9			7.7			4.5			4.3	
Approach LOS		A			A			A			A	
Intersection Summary												
HCM 2000 Control Delay			7.5	H	CM 2000	Level of S	Service		А			
HCM 2000 Volume to Capac	HCM 2000 Volume to Capacity ratio 0.33											
Actuated Cycle Length (s)	23.3	S	um of lost	time (s)			8.0					
Intersection Capacity Utilizat	30.1%	IC	U Level o	of Service	1		А					
Analysis Period (min)	15											
c Critical Lane Group												

Intersection												
Intersection Delay, s/veh	7.9											
Intersection LOS	А											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	5	20	15	0	65	40	15	0	25	15	75
Future Vol, veh/h	0	5	20	15	0	65	40	15	0	25	15	75
Peak Hour Factor	0.92	0.90	0.90	0.90	0.92	0.90	0.90	0.90	0.92	0.90	0.90	0.90
Heavy Vehicles, %	2	0	0	0	2	3	0	0	2	5	0	6
Mvmt Flow	0	6	22	17	0	72	44	17	0	28	17	83
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		1				1				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				1		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				1		
HCM Control Delay		7.4				8.2				7.8		
HCM LOS		А				А				Α		
Lane		NBLn1	EBLn1	WBLn1	SBLn1							
Vol Left, %		22%	12%	54%	40%							
Vol Thru, %		13%	50%	33%	40%							
Vol Right, %		65%	38%	12%	20%							
Sign Control		Stop	Stop	Stop	Stop							
Traffic Vol by Lane		115	40	120	25							
LT Vol		25	5	65	10							
Through Vol		15	20	40	10							
RT Vol		75	15	15	5							
Lane Flow Rate		128	44	133	28							
Geometry Grp		1	1	1	1							
Degree of Util (X)		0.144	0.052	0.159	0.034							
Departure Headway (Hd)		4.071	4.182	4.291	4.395							
Convergence, Y/N		Yes	Yes	Yes	Yes							
Сар		886	860	824	818							
Service Time		2.076	2.19	2.378	2.402							
HCM Lane V/C Ratio		0.144	0.051	0.161	0.034							
HCM Control Delay		7.8	7.4	8.2	7.6							
HCM Lane LOS		А	A	A	A							
HCM 95th-tile Q		0.5	0.2	0.6	0.1							

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Traffic Vol, veh/h	0	10	10	5
Future Vol, veh/h	0	10	10	5
Peak Hour Factor	0.92	0.90	0.90	0.90
Heavy Vehicles, %	2	0	0	0
Mymt Flow	0	11	11	6
Number of Lanes	0	0	1	0
	J	v		J
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		1		
Conflicting Approach Right		EB		
Conflicting Lanes Right		1		
HCM Control Delay		7.6		
HCMLOS		A		
		71		
Lane				

1

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	2	115	2	2	140	10	2	1	2	10	5	5
Future Vol, veh/h	2	115	2	2	140	10	2	1	2	10	5	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	0	5	0	0	0	13	0	0	0	11	100	0
Mvmt Flow	2	129	2	2	157	11	2	1	2	11	6	6

Major/Minor	Major1			М	ajor2			Minor1			Minor2		
Conflicting Flow All	169	0	0		131	0	0	308	308	130	304	303	163
Stage 1	-	-	-		-	-	-	135	135	-	167	167	-
Stage 2	-	-	-		-	-	-	173	173	-	137	136	-
Critical Hdwy	4.1	-	-		4.1	-	-	7.1	6.5	6.2	7.21	7.5	6.2
Critical Hdwy Stg 1	-	-	-		-	-	-	6.1	5.5	-	6.21	6.5	-
Critical Hdwy Stg 2	-	-	-		-	-	-	6.1	5.5	-	6.21	6.5	-
Follow-up Hdwy	2.2	-	-		2.2	-	-	3.5	4	3.3	3.599	4.9	3.3
Pot Cap-1 Maneuver	1421	-	-		1467	-	-	648	609	925	631	477	887
Stage 1	-	-	-		-	-	-	873	789	-	814	608	-
Stage 2	-	-	-		-	-	-	834	760	-	845	630	-
Platoon blocked, %		-	-			-	-						
Mov Cap-1 Maneuver	1421	-	-		1467	-	-	636	607	925	627	475	887
Mov Cap-2 Maneuver	-	-	-		-	-	-	636	607	-	627	475	-
Stage 1	-	-	-		-	-	-	871	787	-	812	607	-
Stage 2	-	-	-		-	-	-	819	758	-	840	629	-
Approach	EB				WB			NB			SB		
HCM Control Delay, s	0.1				0.1			10			11		
HCM LOS								В			В		
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SBLn	1					

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBI	WBR	SBLn1	
Capacity (veh/h)	719	1421	-	- '	1467	-	-	623	
HCM Lane V/C Ratio	0.008	0.002	-	- 0	0.002	-	-	0.036	
HCM Control Delay (s)	10	7.5	0	-	7.5	0	-	11	
HCM Lane LOS	В	А	А	-	А	А	-	В	
HCM 95th %tile Q(veh)	0	0	-	-	0	-	-	0.1	
Intersection

Movement	EBT	EBR	WBL	WBT	NWL	NWR
Traffic Vol, veh/h	5	200	5	130	150	5
Future Vol, veh/h	5	200	5	130	150	5
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	100	-	-	75	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	217	5	141	163	5

Major/Minor	Major1		Major	2	Minor1		
Conflicting Flow All	0	0	Ę	5 0	157	5	
Stage 1	-	-			5	-	
Stage 2	-	-			152	-	
Critical Hdwy	-	-	4.12	2 -	6.42	6.22	
Critical Hdwy Stg 1	-	-			5.42	-	
Critical Hdwy Stg 2	-	-			5.42	-	
Follow-up Hdwy	-	-	2.218	3 -	3.518	3.318	
Pot Cap-1 Maneuver	-	-	1616	i -	834	1078	
Stage 1	-	-			1018	-	
Stage 2	-	-			876	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1616) -	831	1078	
Mov Cap-2 Maneuver	-	-			831	-	
Stage 1	-	-			1018	-	
Stage 2	-	-			873	-	
Approach	EB		WE	3	NW		
HCM Control Delay s	0		0.3	3	10.3		
HCM LOS	•		•		B		
					5		
Minor Lane/Major Mymt	NWLn1NWLn2	EBT	EBR WBI	_ WBT			

Capacity (veh/h)	831	1078	-	- 1616	-	
HCM Lane V/C Ratio	0.196	0.005	-	- 0.003	-	
HCM Control Delay (s)	10.4	8.4	-	- 7.2	0	
HCM Lane LOS	В	А	-	- A	А	
HCM 95th %tile Q(veh)	0.7	0	-	- 0	-	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	15	1	30	1	2	5	55	330	2	5	265	10
Future Vol, veh/h	15	1	30	1	2	5	55	330	2	5	265	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	0	0	4	0	0	0	0	2	0	0	4	9
Mvmt Flow	16	1	32	1	2	5	59	351	2	5	282	11

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	771	768	287	783	772	352	293	0	0	353	0	0
Stage 1	298	298	-	469	469	-	-	-	-	-	-	-
Stage 2	473	470	-	314	303	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.24	7.1	6.5	6.2	4.1	-	-	4.1	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.336	3.5	4	3.3	2.2	-	-	2.2	-	-
Pot Cap-1 Maneuver	320	334	747	314	333	696	1280	-	-	1217	-	-
Stage 1	715	671	-	579	564	-	-	-	-	-	-	-
Stage 2	576	563	-	701	667	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	301	313	747	286	312	696	1280	-	-	1217	-	-
Mov Cap-2 Maneuver	301	313	-	286	312	-	-	-	-	-	-	-
Stage 1	674	668	-	546	532	-	-	-	-	-	-	-
Stage 2	537	531	-	667	664	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	13.1			12.8			1.1			0.1		
HCM LOS	В			В								

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1280	-	-	494	468	1217	-	-	
HCM Lane V/C Ratio	0.046	-	-	0.099	0.018	0.004	-	-	
HCM Control Delay (s)	7.9	0	-	13.1	12.8	8	0	-	
HCM Lane LOS	А	А	-	В	В	А	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	0.3	0.1	0	-	-	

Intersection												
Intersection Delay, s/veh	27.9											
Intersection LOS	D											
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Traffic Vol, veh/h	0	5	200	90	0	275	275	65	0	105	35	270
Future Vol, veh/h	0	5	200	90	0	275	275	65	0	105	35	270
Peak Hour Factor	0.92	0.96	0.96	0.96	0.92	0.96	0.96	0.96	0.92	0.96	0.96	0.96
Heavy Vehicles, %	2	13	7	33	2	25	10	8	2	1	6	8
Mvmt Flow	0	5	208	94	0	286	286	68	0	109	36	281
Number of Lanes	0	1	1	0	0	1	1	0	0	0	1	0
Approach		EB				WB				NB		
Opposing Approach		WB				EB				SB		
Opposing Lanes		2				2				1		
Conflicting Approach Left		SB				NB				EB		
Conflicting Lanes Left		1				1				2		
Conflicting Approach Right		NB				SB				WB		
Conflicting Lanes Right		1				1				2		
HCM Control Delay		24.5				28.5				33.4		
HCM LOS		С				D				D		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1					
Vol Left, %		26%	100%	0%	100%	0%	50%					
Vol Thru, %		9%	0%	69%	0%	81%	46%					
Vol Right, %		66%	0%	31%	0%	19%	4%					
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop					
Traffic Vol by Lane		410	5	290	275	340	140					
LT Vol		105	5	0	275	0	70					
Through Vol		35	0	200	0	275	65					
RT Vol		270	0	90	0	65	5					
Lane Flow Rate		427	5	302	286	354	146					
Geometry Grp		2	7	7	7	7	2					
Degree of Util (X)		0.812	0.013	0.658	0.677	0.746	0.345					
Departure Headway (Hd)		6.95	8.787	7.96	8.505	7.587	8.511					
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes					
Сар		525	409	456	427	478	424					
Service Time		4.95	6.509	5.66	6.215	5.297	6.524					
HCM Lane V/C Ratio		0.813	0.012	0.662	0.67	0.741	0.344					
HCM Control Delay		33.4	11.6	24.7	27.3	29.4	15.9					
HCM Lane LOS		D	В	С	D	D	С					
HCM 95th-tile Q		7.9	0	4.7	4.9	6.2	1.5					

Intersection				
Intersection Delay, s/veh				
Intersection LOS				
Movement	SBU	SBL	SBT	SBR
Traffic Vol, veh/h	0	70	65	5
Future Vol, veh/h	0	70	65	5
Peak Hour Factor	0.92	0.96	0.96	0.96
Heavy Vehicles, %	2	9	7	2
Mvmt Flow	0	73	68	5
Number of Lanes	0	0	1	0
Approach		SB		
Opposing Approach		NB		
Opposing Lanes		1		
Conflicting Approach Left		WB		
Conflicting Lanes Left		2		
Conflicting Approach Right		EB		
Conflicting Lanes Right		2		
HCM Control Delay		15.9		
HCM LOS		С		
Lane				

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	15	1	5	25	0	5	0	5	0	15	5
Future Vol, veh/h	0	15	1	5	25	0	5	0	5	0	15	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	16	1	5	27	0	5	0	5	0	16	5

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	46	35	19	42	36	3	22	0	0	5	0	0
Stage 1	19	19	-	14	14	-	-	-	-	-	-	-
Stage 2	27	16	-	28	22	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	955	857	1059	961	856	1081	1593	-	-	1616	-	-
Stage 1	1000	880	-	1006	884	-	-	-	-	-	-	-
Stage 2	990	882	-	989	877	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	930	854	1059	944	853	1081	1593	-	-	1616	-	-
Mov Cap-2 Maneuver	930	854	-	944	853	-	-	-	-	-	-	-
Stage 1	997	880	-	1003	881	-	-	-	-	-	-	-
Stage 2	957	879	-	970	877	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.3			9.3			3.6			0		
HCM LOS	А			A								

Minor Lane/Major Mvmt	NBL	NBT	NBR E	BLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1593	-	-	864	867	1616	-	-	
HCM Lane V/C Ratio	0.003	-	-	0.02	0.038	-	-	-	
HCM Control Delay (s)	7.3	0	-	9.3	9.3	0	-	-	
HCM Lane LOS	А	А	-	А	А	Α	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.1	0.1	0	-	-	

7/26/2016

Intersection

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Traffic Vol, veh/h	415	250	235	35	35	400	
Future Vol, veh/h	415	250	235	35	35	400	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	100	-	-	-	0	0	
Veh in Median Storage, #	-	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	451	272	255	38	38	435	

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	293	0	-	0	1312	147	
Stage 1	-	-	-	-	274	-	
Stage 2	-	-	-	-	1038	-	
Critical Hdwy	4.14	-	-	-	6.84	6.94	
Critical Hdwy Stg 1	-	-	-	-	5.84	-	
Critical Hdwy Stg 2	-	-	-	-	5.84	-	
Follow-up Hdwy	2.22	-	-	-	3.52	3.32	
Pot Cap-1 Maneuver	1265	-	-	-	150	873	
Stage 1	-	-	-	-	747	-	
Stage 2	-	-	-	-	302	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1265	-	-	-	97	873	
Mov Cap-2 Maneuver	-	-	-	-	166	-	
Stage 1	-	-	-	-	747	-	
Stage 2	-	-	-	-	194	-	
Annroach	EB		W/R		SB		
HCM Control Dolov o	<u> </u>		000		14.7		
HCM LOS	0.9		U		14.7 D		
					D		
Minor Lane/Major Mvmt	EBL	EBT	WBT WBR SBLn1 SBLn2				
Connector (veh/h)	4000		400 070				

Capacity (veh/h)	1265	-	-	- 166	5 873	
HCM Lane V/C Ratio	0.357	-	-	- 0.229	0.498	
HCM Control Delay (s)	9.4	-	-	- 33	3 13.1	
HCM Lane LOS	А	-	-	- C) В	
HCM 95th %tile Q(veh)	1.6	-	-	- 0.8	3 2.8	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	5	570	5	10	680	10	1	1	5	1	1	5
Future Vol, veh/h	5	570	5	10	680	10	1	1	5	1	1	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	3	0	0	2	0	0	0	0	0	0	0
Mvmt Flow	5	600	5	11	716	11	1	1	5	1	1	5

Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	726	0	0	605	0	0	1358	1360	603	1358	1358	721
Stage 1	-	-	-	-	-	-	613	613	-	742	742	-
Stage 2	-	-	-	-	-	-	745	747	-	616	616	-
Critical Hdwy	4.1	-	-	4.1	-	-	7.1	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.1	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.5	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	886	-	-	983	-	-	127	150	503	127	150	431
Stage 1	-	-	-	-	-	-	483	486	-	411	425	-
Stage 2	-	-	-	-	-	-	409	423	-	481	485	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	886	-	-	983	-	-	122	146	503	122	146	431
Mov Cap-2 Maneuver	-	-	-	-	-	-	122	146	-	122	146	-
Stage 1	-	-	-	-	-	-	479	482	-	407	417	-
Stage 2	-	-	-	-	-	-	395	415	-	471	481	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.1			18.2			19.1		
HCM LOS							С			С		

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR \$	SBLn1
Capacity (veh/h)	280	886	-	-	983	-	-	263
HCM Lane V/C Ratio	0.026	0.006	-	-	0.011	-	-	0.028
HCM Control Delay (s)	18.2	9.1	0	-	8.7	0	-	19.1
HCM Lane LOS	С	А	А	-	А	А	-	С
HCM 95th %tile Q(veh)	0.1	0	-	-	0	-	-	0.1

26

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	0	200	5	200	145	85	0	0	200	140	0	10
Future Vol, veh/h	0	200	5	200	145	85	0	0	200	140	0	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	217	5	217	158	92	0	0	217	152	0	11

Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	250	0	0	223	0	0	864	905	220	968	862	204
Stage 1	-	-	-	-	-	-	220	220	-	639	639	-
Stage 2	-	-	-	-	-	-	644	685	-	329	223	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1316	-	-	1346	-	-	274	276	820	233	293	837
Stage 1	-	-	-	-	-	-	782	721	-	464	470	-
Stage 2	-	-	-	-	-	-	461	448	-	684	719	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1316	-	-	1346	-	-	231	224	820	~ 146	238	837
Mov Cap-2 Maneuver	-	-	-	-	-	-	231	224	-	~ 146	238	-
Stage 1	-	-	-	-	-	-	782	721	-	464	381	-
Stage 2	-	-	-	-	-	-	369	363	-	503	719	-

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	3.8	11	145.4	
HCM LOS			В	F	

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	BLn1
Capacity (veh/h)	820	1316	-	-	1346	-	-	155
HCM Lane V/C Ratio	0.265	-	-	-	0.162	-	-	1.052
HCM Control Delay (s)	11	0	-	-	8.2	0	-	145.4
HCM Lane LOS	В	А	-	-	А	А	-	F
HCM 95th %tile Q(veh)	1.1	0	-	-	0.6	-	-	8.3
Natao								
NOLES								

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

7/26/2016

Intersection

Movement	EBT	EBR	WBL	WBT	NBL	NBR
Traffic Vol, veh/h	450	0	20	515	185	15
Future Vol, veh/h	450	0	20	515	185	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	25
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	96	96	96	96	96	96
Heavy Vehicles, %	5	0	6	3	1	0
Mvmt Flow	469	0	21	536	193	16

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	469	0	1047	469	
Stage 1	-	-	-	-	469	-	
Stage 2	-	-	-	-	578	-	
Critical Hdwy	-	-	4.16	-	6.41	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.41	-	
Critical Hdwy Stg 2	-	-	-	-	5.41	-	
Follow-up Hdwy	-	-	2.254	-	3.509	3.3	
Pot Cap-1 Maneuver	-	-	1072	-	254	598	
Stage 1	-	-	-	-	632	-	
Stage 2	-	-	-	-	563	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1072	-	247	598	
Mov Cap-2 Maneuver	-	-	-	-	247	-	
Stage 1	-	-	-	-	632	-	
Stage 2	-	-	-	-	547	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		0.3		53.7		
HCM LOS					F		

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	247	598	-	-	1072	-	
HCM Lane V/C Ratio	0.78	0.026	-	-	0.019	-	
HCM Control Delay (s)	57.1	11.2	-	-	8.4	0	
HCM Lane LOS	F	В	-	-	А	Α	
HCM 95th %tile Q(veh)	5.8	0.1	-	-	0.1	-	

0

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	0	125	0	200	20	0
Future Vol, veh/h	0	125	0	200	20	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	136	0	217	22	0

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	217	0	0	0	217	217	
Stage 1	-	-	-	-	217	-	
Stage 2	-	-	-	-	0	-	
Critical Hdwy	4.12	-	-	-	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	
Follow-up Hdwy	2.218	-	-	-	4.018	3.318	
Pot Cap-1 Maneuver	1353	-	-	-	681	823	
Stage 1	-	-	-	-	723	-	
Stage 2	-	-	-	-	-	-	
Platoon blocked, %		-		-			
Mov Cap-1 Maneuver	1353	-	-	-	0	823	
Mov Cap-2 Maneuver	-	-	-	-	0	-	
Stage 1	-	-	-	-	0	-	
Stage 2	-	-	-	-	0	-	
Approach	EB		NB		SB		
HCM Control Delay, s	0		0				
HCM LOS					-		

Minor Lane/Major Mvmt	NBL	NBT	EBL	EBR SBI	Ln1	
Capacity (veh/h)	-	-	1353	-	-	
HCM Lane V/C Ratio	-	-	-	-	-	
HCM Control Delay (s)	0	-	0	-	-	
HCM Lane LOS	Α	-	А	-	-	
HCM 95th %tile Q(veh)	-	-	0	-	-	

Intersection

Movement	EBT	EBR	WBL	WBT	NBL	NBR
Traffic Vol, veh/h	350	115	110	430	105	90
Future Vol, veh/h	350	115	110	430	105	90
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	Yield	-	None	-	None
Storage Length	-	155	250	-	150	0
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, %	5	1	0	3	0	0
Mvmt Flow	368	121	116	453	111	95

Major/Minor	Major1		Major2		Minor1		
Conflicting Flow All	0	0	368	0	1052	368	
Stage 1	-	-	-	-	368	-	
Stage 2	-	-	-	-	684	-	
Critical Hdwy	-	-	4.1	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	-	-	2.2	-	3.5	3.3	
Pot Cap-1 Maneuver	-	-	1202	-	253	682	
Stage 1	-	-	-	-	704	-	
Stage 2	-	-	-	-	505	-	
Platoon blocked, %	-	-		-			
Mov Cap-1 Maneuver	-	-	1202	-	229	682	
Mov Cap-2 Maneuver	-	-	-	-	229	-	
Stage 1	-	-	-	-	704	-	
Stage 2	-	-	-	-	456	-	
Approach	EB		WB		NB		
HCM Control Delay, s	0		1.7		23.8		
HCM LOS					С		

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)	229	682	-	-	1202	-	
HCM Lane V/C Ratio	0.483	0.139	-	-	0.096	-	
HCM Control Delay (s)	34.6	11.1	-	-	8.3	-	
HCM Lane LOS	D	В	-	-	А	-	
HCM 95th %tile Q(veh)	2.4	0.5	-	-	0.3	-	

7/26/2016

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	45	380	15	80	445	25	10	10	70	55	10	85
Future Vol, veh/h	45	380	15	80	445	25	10	10	70	55	10	85
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	225	-	-	100	-	50	150	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	93	93	93	93	93	93	93	93	93	93	93	93
Heavy Vehicles, %	3	5	0	3	3	0	0	13	2	0	0	3
Mvmt Flow	48	409	16	86	478	27	11	11	75	59	11	91

Major/Minor	Major1		Major2			Minor1			Minor2		
Conflicting Flow All	478 () 0	425	0	0	1215	1164	212	957	1173	478
Stage 1	-		-	-	-	513	513	-	651	651	-
Stage 2	-		-	-	-	702	651	-	306	522	-
Critical Hdwy	4.13		4.16	-	-	7.3	6.695	6.93	7.3	6.5	6.245
Critical Hdwy Stg 1	-		-	-	-	6.5	5.695	-	6.1	5.5	-
Critical Hdwy Stg 2	-		-	-	-	6.1	5.695	-	6.5	5.5	-
Follow-up Hdwy	2.227		2.23	-	-	3.5	4.1235	3.319	3.5	4	3.3285
Pot Cap-1 Maneuver	1079		1124	-	-	149	181	794	227	194	584
Stage 1	-		-	-	-	517	513	-	461	468	-
Stage 2	-		-	-	-	432	442	-	684	534	-
Platoon blocked, %				-	-						
Mov Cap-1 Maneuver	1079		1124	-	-	109	160	794	178	171	584
Mov Cap-2 Maneuver	-		-	-	-	109	160	-	178	171	-
Stage 1	-		-	-	-	494	490	-	440	432	-
Stage 2	-		-	-	-	328	408	-	579	510	-
Approach	EB		WB			NB			SB		
HCM Control Delay, s	0.9		1.2			16.3			31.5		
HCM LOS						С			D		
Minor Lane/Major Mvmt	NBLn1 NBLn2	2 EBL	EBT EBR	WBL	WBT	WBR SBLn1					

	INDLILL	NDLIIZ	EDL	EDI	EDK	VVDL	VVDI	WDR ODLIII	
Capacity (veh/h)	109	531	1079	-	-	1124	-	- 292	
HCM Lane V/C Ratio	0.099	0.162	0.045	-	-	0.077	-	- 0.552	
HCM Control Delay (s)	41.6	13.1	8.5	-	-	8.5	-	- 31.5	
HCM Lane LOS	E	В	А	-	-	А	-	- D	
HCM 95th %tile Q(veh)	0.3	0.6	0.1	-	-	0.2	-	- 3.1	

HCM 2010 analysis expects stop-line detection. Detectors cannot be further than 20 feet from the stop bar.

Intersection																
Intersection Delay, s/vel	ו 7.1															
Intersection LOS	Α															
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL	SBT	SBR
Traffic Vol, veh/h	0	1	15	5	0	15	25	10	0	1	1	5	0	5	1	1
Future Vol, veh/h	0	1	15	5	0	15	25	10	0	1	1	5	0	5	1	1
Peak Hour Factor	0.92	0.84	0.84	0.84	0.92	0.84	0.84	0.84	0.92	0.84	0.84	0.84	0.92	0.84	0.84	0.84
Heavy Vehicles, %	2	0	0	0	2	0	5	0	2	0	0	20	2	0	0	0
Mvmt Flow	0	1	18	6	0	18	30	12	0	1	1	6	0	6	1	1
Number of Lanes	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Approach		EB				WB				NB				SB		
Opposing Approach		WB				EB				SB				NB		
Opposing Lanes		1				1				1				1		
Conflicting Approach Le	ft	SB				NB				EB				WB		
Conflicting Lanes Left		1				1				1				1		
Conflicting Approach Rig	ght	NB				SB				WB				EB		
Conflicting Lanes Right		1				1				1				1		
HCM Control Delay		7				7.2				6.7				7.2		
HCM LOS		А				А				А				А		
Lane	Ν	VBLn1	EBLn1V	VBLn1	SBLn1											
Vol Left, %		14%	5%	30%	71%											
Vol Thru, %		14%	71%	50%	14%											
Vol Right, %		71%	24%	20%	14%											
Sign Control		Stop	Stop	Stop	Stop											
Traffic Vol by Lane		7	21	50	7											
LT Vol		1	1	15	5											
Through Vol		1	15	25	1											
RT Vol		5	5	10	1											
Lane Flow Rate		8	25	60	8											
Geometry Grp		1	1	1	1											
Degree of Util (X)		800.0	0.027	0.064	0.01											
Departure Headway (Hd	l)	3.652	3.838	3.886	4.109											
Convergence, Y/N		Yes	Yes	Yes	Yes											
Сар		977	934	924	870											
Service Time		1.685	1.856	1.898	2.141											
HCM Lane V/C Ratio		0.008	0.027	0.065	0.009											
HCM Control Delay		6.7	7	7.2	7.2											
HCM Lane LOS		А	А	А	А											
HCM 95th-tile Q		0	0.1	0.2	0											

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	85	5	55	5	5	10	40	315	5	10	335	85
Future Vol, veh/h	85	5	55	5	5	10	40	315	5	10	335	85
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	5	0	0	0	33	0	0	2	0	20	2	3
Mvmt Flow	92	5	60	5	5	11	43	342	5	11	364	92

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	872	867	410	897	910	345	457	0	0	348	0	0
Stage 1	432	432	-	432	432	-	-	-	-	-	-	-
Stage 2	440	435	-	465	478	-	-	-	-	-	-	-
Critical Hdwy	7.15	6.5	6.2	7.1	6.83	6.2	4.1	-	-	4.3	-	-
Critical Hdwy Stg 1	6.15	5.5	-	6.1	5.83	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.15	5.5	-	6.1	5.83	-	-	-	-	-	-	-
Follow-up Hdwy	3.545	4	3.3	3.5	4.297	3.3	2.2	-	-	2.38	-	-
Pot Cap-1 Maneuver	268	293	646	263	244	702	1114	-	-	1117	-	-
Stage 1	596	586	-	606	533	-	-	-	-	-	-	-
Stage 2	590	584	-	581	507	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	247	275	646	224	229	702	1114	-	-	1117	-	-
Mov Cap-2 Maneuver	247	275	-	224	229	-	-	-	-	-	-	-
Stage 1	567	578	-	577	507	-	-	-	-	-	-	-
Stage 2	547	556	-	515	500	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	26.2			16.2			0.9			0.2		
HCM LOS	D			С								

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1114	-	-	324	342	1117	-	-	
HCM Lane V/C Ratio	0.039	-	-	0.486	0.064	0.01	-	-	
HCM Control Delay (s)	8.4	0	-	26.2	16.2	8.3	0	-	
HCM Lane LOS	А	А	-	D	С	А	А	-	
HCM 95th %tile Q(veh)	0.1	-	-	2.5	0.2	0	-	-	

HCM 2010 analysis expects stop-line detection. Detectors cannot be further than 20 feet from the stop bar.

HCM 2010 analysis expects stop-line detection. Detectors cannot be further than 20 feet from the stop bar.

Intersection

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Vol, veh/h	15	85	75	15	25	60
Future Vol, veh/h	15	85	75	15	25	60
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles, %	8	2	8	22	0	4
Mvmt Flow	18	101	89	18	30	71

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	229	98	0	0	107	0	
Stage 1	98	-	-	-	-	-	
Stage 2	131	-	-	-	-	-	
Critical Hdwy	6.48	6.22	-	-	4.1	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.318	-	-	2.2	-	
Pot Cap-1 Maneuver	746	958	-	-	1497	-	
Stage 1	911	-	-	-	-	-	
Stage 2	880	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	730	958	-	-	1497	-	
Mov Cap-2 Maneuver	730	-	-	-	-	-	
Stage 1	911	-	-	-	-	-	
Stage 2	862	-	-	-	-	-	
Approach	WB		NB		SB		

Approach	VVD	IND	30	
HCM Control Delay, s	9.5	0	2.2	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT	
Capacity (veh/h)	-	-	915	1497	-	
HCM Lane V/C Ratio	-	-	0.13	0.02	-	
HCM Control Delay (s)	-	-	9.5	7.5	0	
HCM Lane LOS	-	-	А	Α	А	
HCM 95th %tile Q(veh)	-	-	0.4	0.1	-	

7/26/2016

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	40	1	50	1	1	5	70	295	1	5	255	100
Future Vol, veh/h	40	1	50	1	1	5	70	295	1	5	255	100
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	0	0	0	0	0	0	0	2	0	0	2	0
Mvmt Flow	42	1	53	1	1	5	74	311	1	5	268	105

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	794	791	321	816	842	311	374	0	0	312	0	0
Stage 1	332	332	-	458	458	-	-	-	-	-	-	-
Stage 2	462	459	-	358	384	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.1	-	-	4.1	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.2	-	-	2.2	-	-
Pot Cap-1 Maneuver	308	324	724	298	303	734	1196	-	-	1260	-	-
Stage 1	686	648	-	587	570	-	-	-	-	-	-	-
Stage 2	584	570	-	664	615	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	286	298	724	259	279	734	1196	-	-	1260	-	-
Mov Cap-2 Maneuver	286	298	-	259	279	-	-	-	-	-	-	-
Stage 1	635	645	-	543	527	-	-	-	-	-	-	-
Stage 2	535	527	-	612	612	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	15.8			12.4			1.6			0.1		
HCMLOS	С			В								

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	1196	-	-	429	491	1260	-	-	
HCM Lane V/C Ratio	0.062	-	-	0.223	0.015	0.004	-	-	
HCM Control Delay (s)	8.2	0	-	15.8	12.4	7.9	0	-	
HCM Lane LOS	А	А	-	С	В	А	А	-	
HCM 95th %tile Q(veh)	0.2	-	-	0.8	0	0	-	-	

7/26/2016

Intersection

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Traffic Vol, veh/h	10	15	5	220	140	10
Future Vol, veh/h	10	15	5	220	140	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, #	-	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	14	0	2	5	0
Mvmt Flow	11	17	6	244	156	11

Major/Minor	Major1		N	1ajor2		Minor2		
Conflicting Flow All	250	0		-	0	167	128	
Stage 1	-	-		-	-	128	-	
Stage 2	-	-		-	-	39	-	
Critical Hdwy	4.1	-		-	-	6.45	6.2	
Critical Hdwy Stg 1	-	-		-	-	5.45	-	
Critical Hdwy Stg 2	-	-		-	-	5.45	-	
Follow-up Hdwy	2.2	-		-	-	3.545	3.3	
Pot Cap-1 Maneuver	1327	-		-	-	817	927	
Stage 1	-	-		-	-	890	-	
Stage 2	-	-		-	-	976	-	
Platoon blocked, %		-		-	-			
Mov Cap-1 Maneuver	1327	-		-	-	810	927	
Mov Cap-2 Maneuver	-	-		-	-	810	-	
Stage 1	-	-		-	-	890	-	
Stage 2	-	-		-	-	968	-	
Approach	EB			WB		SB		
HCM Control Delay, s	3.1			0		10.5		
HCM LOS						В		
Minor Lane/Major Mvmt	EBL	EBT	WBT WBR SBLn1					
Capacity (veh/h)	1327	-	817					

HCM Lane V/C Ratio	0.008	-	-	- 0.204	
HCM Control Delay (s)	7.7	0	-	- 10.5	
HCM Lane LOS	А	А	-	- B	
HCM 95th %tile Q(veh)	0	-	-	- 0.8	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR
Traffic Vol, veh/h	5	15	30	85	55	0
Future Vol, veh/h	5	15	30	85	55	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, #	0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	0	8	0	11	5	8
Mvmt Flow	6	17	35	99	64	0

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	233	64	64	0	-	0	
Stage 1	64	-	-	-	-	-	
Stage 2	169	-	-	-	-	-	
Critical Hdwy	6.4	6.28	4.1	-	-	-	
Critical Hdwy Stg 1	5.4	-	-	-	-	-	
Critical Hdwy Stg 2	5.4	-	-	-	-	-	
Follow-up Hdwy	3.5	3.372	2.2	-	-	-	
Pot Cap-1 Maneuver	760	984	1551	-	-	-	
Stage 1	964	-	-	-	-	-	
Stage 2	866	-	-	-	-	-	
Platoon blocked, %				-	-	-	
Mov Cap-1 Maneuver	742	984	1551	-	-	-	
Mov Cap-2 Maneuver	742	-	-	-	-	-	
Stage 1	964	-	-	-	-	-	
Stage 2	845	-	-	-	-	-	
Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	742 742 964 845	984 - - -	1551 - - -	-	- - - - - -	-	

Approach	EB	NB	SB	
HCM Control Delay, s	9.1	1.9	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBL	NBT EBI	Ln1	SBT	SBR
Capacity (veh/h)	1551	- 9	910	-	-
HCM Lane V/C Ratio	0.022	- 0.0	026	-	-
HCM Control Delay (s)	7.4	0	9.1	-	-
HCM Lane LOS	А	Α	А	-	-
HCM 95th %tile Q(veh)	0.1	-	0.1	-	-

7/26/2016

Intersection

Movement	WBL	WBR	NBT	NBR	SBL	SBT
Traffic Vol, veh/h	80	200	150	70	135	130
Future Vol, veh/h	80	200	150	70	135	130
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storage, #	0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	8	1	4	9	0	5
Mvmt Flow	91	227	170	80	153	148

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	665	210	0	0	250	0	
Stage 1	210	-	-	-	-	-	
Stage 2	455	-	-	-	-	-	
Critical Hdwy	6.48	6.21	-	-	4.1	-	
Critical Hdwy Stg 1	5.48	-	-	-	-	-	
Critical Hdwy Stg 2	5.48	-	-	-	-	-	
Follow-up Hdwy	3.572	3.309	-	-	2.2	-	
Pot Cap-1 Maneuver	416	833	-	-	1327	-	
Stage 1	811	-	-	-	-	-	
Stage 2	627	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	368	833	-	-	1327	-	
Mov Cap-2 Maneuver	456	-	-	-	-	-	
Stage 1	811	-	-	-	-	-	
Stage 2	555	-	-	-	-	-	
•			ND		05		

Approach	WB	NB	SB	
HCM Control Delay, s	15	0	4.1	
HCMLOS	С			

Minor Lane/Major Mvmt	NBT	NBRW	/BLn1	SBL	SBT	
Capacity (veh/h)	-	-	674	1327	-	
HCM Lane V/C Ratio	-	-	0.472	0.116	-	
HCM Control Delay (s)	-	-	15	8.1	-	
HCM Lane LOS	-	-	С	Α	-	
HCM 95th %tile Q(veh)	-	-	2.5	0.4	-	

Intersection

Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Traffic Vol, veh/h	60	25	20	150	115	95	
Future Vol, veh/h	60	25	20	150	115	95	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	Free	
Storage Length	0	-	-	-	-	-	
Veh in Median Storage, #	0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	94	94	94	94	94	94	
Heavy Vehicles, %	4	5	19	5	4	5	
Mvmt Flow	64	27	21	160	122	101	

Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	324	122	122	0	-	0	
Stage 1	122	-	-	-	-	-	
Stage 2	202	-	-	-	-	-	
Critical Hdwy	6.44	6.25	4.29	-	-	-	
Critical Hdwy Stg 1	5.44	-	-	-	-	-	
Critical Hdwy Stg 2	5.44	-	-	-	-	-	
Follow-up Hdwy	3.536	3.345	2.371	-	-	-	
Pot Cap-1 Maneuver	666	921	1366	-	-	0	
Stage 1	898	-	-	-	-	0	
Stage 2	827	-	-	-	-	0	
Platoon blocked, %				-	-		
Mov Cap-1 Maneuver	655	921	1366	-	-	-	
Mov Cap-2 Maneuver	685	-	-	-	-	-	
Stage 1	898	-	-	-	-	-	
Stage 2	813	-	-	-	-	-	

Approach	EB	NB	SB	
HCM Control Delay, s	10.5	0.9	0	
HCM LOS	В			

Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT
Capacity (veh/h)	1366	- 741	-
HCM Lane V/C Ratio	0.016	- 0.122	-
HCM Control Delay (s)	7.7	0 10.5	-
HCM Lane LOS	А	A B	-
HCM 95th %tile Q(veh)	0	- 0.4	-

HCM 2010 analysis expects stop-line detection. Detectors cannot be further than 20 feet from the stop bar.

7/26/2016

3

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	5	215	65	5	170	10	60	10	5	10	10	40
Future Vol, veh/h	5	215	65	5	170	10	60	10	5	10	10	40
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	200	-	0	200	-	175	-	-	-	-	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	88	88	88	88	88	88	88	88	88	88	88	88
Heavy Vehicles, %	0	8	4	0	0	0	9	0	0	0	0	0
Mvmt Flow	6	244	74	6	193	11	68	11	6	11	11	45

Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	193	0	0	244	0	0	489	461	244	469	461	193
Stage 1	-	-	-	-	-	-	256	256	-	205	205	-
Stage 2	-	-	-	-	-	-	233	205	-	264	256	-
Critical Hdwy	4.1	-	-	4.1	-	-	7.19	6.5	6.2	7.1	6.5	6.2
Critical Hdwy Stg 1	-	-	-	-	-	-	6.19	5.5	-	6.1	5.5	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.19	5.5	-	6.1	5.5	-
Follow-up Hdwy	2.2	-	-	2.2	-	-	3.581	4	3.3	3.5	4	3.3
Pot Cap-1 Maneuver	1392	-	-	1334	-	-	478	500	800	508	500	854
Stage 1	-	-	-	-	-	-	733	699	-	802	736	-
Stage 2	-	-	-	-	-	-	755	736	-	746	699	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1392	-	-	1334	-	-	442	496	800	492	496	854
Mov Cap-2 Maneuver	-	-	-	-	-	-	442	496	-	492	496	-
Stage 1	-	-	-	-	-	-	730	696	-	799	733	-
Stage 2	-	-	-	-	-	-	701	733	-	725	696	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.2			14.5			10.8		
HCM LOS							В			В		

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR \$	SBLn1
Capacity (veh/h)	463	1392	-	-	1334	-	-	687
HCM Lane V/C Ratio	0.184	0.004	-	-	0.004	-	-	0.099
HCM Control Delay (s)	14.5	7.6	-	-	7.7	-	-	10.8
HCM Lane LOS	В	А	-	-	А	-	-	В
HCM 95th %tile Q(veh)	0.7	0	-	-	0	-	-	0.3

Intersection

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Traffic Vol, veh/h	5	225	145	175	100	40
Future Vol, veh/h	5	225	145	175	100	40
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	250	-	-	275	150	0
Veh in Median Storage, #	-	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	79	79	79	79	79	79
Heavy Vehicles, %	0	5	4	2	12	0
Mvmt Flow	6	285	184	222	127	51

Major/Minor	Major1		Major2		Minor2		
Conflicting Flow All	184	0	-	0	481	184	
Stage 1	-	-	-	-	184	-	
Stage 2	-	-	-	-	297	-	
Critical Hdwy	4.1	-	-	-	6.52	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	5.52	-	
Follow-up Hdwy	2.2	-	-	-	3.608	3.3	
Pot Cap-1 Maneuver	1403	-	-	-	526	864	
Stage 1	-	-	-	-	824	-	
Stage 2	-	-	-	-	732	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1403	-	-	-	524	864	
Mov Cap-2 Maneuver	-	-	-	-	589	-	
Stage 1	-	-	-	-	824	-	
Stage 2	-	-	-	-	729	-	
Annroach	FR		WB		SB		
HCM Control Delay s	0.2		0		11.8		
HCM LOS	0.2		U		R		
					Б		
Minor Lane/Major Mvmt	EBL	EBT V	VBT WBR SBLn1 SBLn2				

Capacity (veh/h)	1403	-	-	- 58	89 864	
HCM Lane V/C Ratio	0.005	-	-	- 0.21	5 0.059	
HCM Control Delay (s)	7.6	-	-	- 12	.8 9.4	
HCM Lane LOS	А	-	-	-	B A	
HCM 95th %tile Q(veh)	0	-	-	- 0.	.8 0.2	

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	1	1	1	10	1	65	0	770	5	35	900	1
Future Vol, veh/h	1	1	1	10	1	65	0	770	5	35	900	1
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	Yield	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	300	-	-
Veh in Median Storage, #	-	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	0	0	4	0	0	0	3	2	0	0	3	25
Mvmt Flow	1	1	1	11	1	73	0	865	6	39	1011	1

Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1992	1955	1012	1957	1956	865	1012	0	0	865	0	0
Stage 1	1090	1090	-	865	865	-	-	-	-	-	-	-
Stage 2	902	865	-	1092	1091	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.24	7.1	6.5	6.2	4.13	-	-	4.1	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.336	3.5	4	3.3	2.227	-	-	2.2	-	-
Pot Cap-1 Maneuver	46	65	288	48	65	356	681	-	-	787	-	-
Stage 1	263	294	-	351	374	-	-	-	-	-	-	-
Stage 2	335	374	-	262	293	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	35	62	288	45	62	356	681	-	-	787	-	-
Mov Cap-2 Maneuver	35	62	-	45	62	-	-	-	-	-	-	-
Stage 1	263	279	-	351	374	-	-	-	-	-	-	-
Stage 2	265	374	-	247	278	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	66.4			41.5			0			0.4		
HCM LOS	F			E								

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR	
Capacity (veh/h)	681	-	-	62	181	787	-	-	
HCM Lane V/C Ratio	-	-	-	0.054	0.472	0.05	-	-	
HCM Control Delay (s)	0	-	-	66.4	41.5	9.8	-	-	
HCM Lane LOS	А	-	-	F	Е	Α	-	-	
HCM 95th %tile Q(veh)	0	-	-	0.2	2.3	0.2	-	-	

Appendix E

ODOT Crash Reports and ODOT Excess Proportion of Specific Crash Type Worksheet

Existing Conditional Memorandum: ODOT Crash Reports and ODOT Excess Proportion of Specific Crash Type Worksheet

City of Warrenton

	M				1	C C			
(C L				()	E	EOP	LE
(O G				-	r			S
	o G				c -	-		v	D
							TOTE	T	
L D E					0 \	/ VEH	ICLE	1.	LAE
SERIAL M A *COUNTY OR N	N Y	COLL			RE	E TYP	/OWN	ΓÌ	ΙLΕ
NO DATE E Y CITY NAME 7	I P CRASH LOCATION	TYPE EVENT	CAUSE	ERROR	FΗ	ł #1	#2	Lч	JСD
	NI D UV 000 ODECON COLOR AR MD E 00		07 07	042 010	DDV (011	011	0	1 NT NT
00193 05/22/2010 IP SA Warrenton M	IN R HY 009, OREGON COAST AT MP 5.00	REAR	07,27	043,010	DRI	2 011	011	0	
0010/03/21/2010 IP SU Warrenton M	IN R HY 009, OREGON COAST AT MP 5.00	REAR	0 /	043	DRY 2	2 011	011	0	L N N
00450 09/14/2014 3P SU Warrenton M	IN R HY 009, OREGON COAST AT MP 5.20	REAR	29	026	DRY 2	2 011	011	0	2 N N
00241 05/14/2011 8P SA Warrenton M	IN R HY 009, OREGON COAST AT MP 5.25	PED	19	057	DRY 1	1 011		0	1 Y N
00585 12/15/2010 6P WE Warrenton M	1N R HY 009, OREGON COAST AT MP 5.25	REAR 092,124	26,07,01	043,047,043,0	WET 2	2 011	011	0	1 N Y
00283 07/08/2010 3P TH Warrenton M	1N R HY 009, OREGON COAST AT MP 5.29	REAR	07	026	DRY 2	2 011	011	0	1 N N
00374 08/12/2014 2P TU Warrenton M	AN R HY 009, OREGON COAST AT MP 5.30	REAR 092	29	026	DRY 2	2 011	011	0	0 N N
00325 07/23/2013 12A TU Warrenton M	IN R HY 009, OREGON COAST AT MP 5,30	FTX 092.046	26	080.081	DRY '	011		0	0 N N
00372 08/15/2010 1P SU Warrenton M	IN R HY OOG ORECON COAST AT MP 5 34	REAR	07	026	DRY (2 011	011	Õ.	0 N N
00352 00/15/2010 11 50 Warrenton M	M R HI 000, ORECON CONST AT ME 5.54	DEAD 002	20	026	DRI 2	~ 011	011	0	ON N
00332 00/00/2014 SF WE Wallencon M	IN R HI 009, OREGON COASI AI MF 5.50	REAR 092	2.9	020	DRI 2	2 011	011	0	
00328 08/01/2012 SP WE warrenton M	IN R HY UU9, OREGON COAST AT MP 5.56	REAR	10	042	DRY	2 011	011	0	UNY
00170 05/05/2011 3P TH Warrenton M	AN R HY UU9, OREGON COAST AT MP 5.57	REAR	07,27	043,016	WET 2	2 011	011	0	LNN
00446 10/05/2011 3P WE Warrenton M	1N R HY 009, OREGON COAST AT MP 5.97	REAR	01	042	UNK 2	2 011	011	0	0 N Y
00366 08/09/2010 11A MO Warrenton M	1N R HY 009, OREGON COAST AT MP 6.00	REAR	07	043	DRY 2	2 011	011	0	1 N N
00412 09/16/2011 3P FR Warrenton M	1N R HY 009, OREGON COAST AT MP 6.07	REAR 092	07	043	DRY 2	2 011	011	0	1 N N
00120 03/26/2013 7P TU Warrenton M	IN R HY 009, OREGON COAST AT MP 6.07	REAR	07,27	043,042,016	WET 2	2 011	011	0	1 N N
00359 08/12/2013 2P MO Warrenton M	IN R HY 009, OREGON COAST AT MP 6.07	REAR	07,27	043,016	DRY 2	2 011	011	0	2 N N
00315 07/23/2014 3P WE Warrenton M	IN R HY 009, OREGON COAST AT MP 6.07	REAR 092	29	026	DRY 2	2 011	011	0	0 N N
00400 09/11/2011 12P SU Warrenton M	IN R HY 009 ORECON COAST AT MP 6 07	NCOL 092	01	047	DRY	1 091	011	0	2 N V
00090 03/01/2012 60 TH Warrenton	M R HI 000, ORECON CONST AT ME 6.07	ETY 124 043	01	047 090	TOP			0	0 N V
00063 03/01/2012 OA IH Wallencoll M	IN R HI 009, OREGON CORST RI MF 0.07	FIA 124,043	01	047,000	ICE .		011	0	O N N
00051 02/04/2014 2P TO Warrenton M	IN R HY 009, OREGON COAST AT MP 6.40	TURN 104	02	028	DRI	2 011	011	0	
00476 10/15/2012 /P MO Warrenton M	IN R HY UU9, OREGON COAST AT MP 6.40	TURN 124	10	047,080	WEI 2	2 011	011	0.	2 N Y
00003 01/07/2013 3P MO Warrenton M	IN R HY UU9, OREGON COAST AT MP 6.40	TURN	02	028	WET 2	2 011	011	0	LNN
00314 07/18/2013 4P TH Warrenton M	1N R HY 009, OREGON COAST AT MP 6.40	TURN	02	028	DRY 2	2 011	091	0	1 N N
00113 03/15/2011 11A TU Warrenton M	1N R HY 009, OREGON COAST AT MP 6.41	TURN	02	028	WET 2	2 011	011	0	0 N N
00117 03/20/2011 12P SU Warrenton M	1N R HY 009, OREGON COAST AT MP 6.41	TURN 110	01,08	047,001	DRY 1	1 011		0	1 N N
00041 02/24/2010 7A WE Warrenton M	1N R HY 009, OREGON COAST AT MP 6.47	TURN	08	001,080	WET 2	2 011	011	0	1 N N
00528 11/26/2011 5P SA Warrenton M	IN R HY 009, OREGON COAST AT MP 6.48	OTH 035	12		UNK 3	1 011		0	0 N N
00378 09/02/2011 3P FR Warrenton M	IN R HY 009, OREGON COAST AT MP 6.48	REAR	07.27	043.016	DRY 2	2 011	011	0	1 N N
00602 12/10/2014 3P WE Warrenton M	IN R HY 009, OREGON COAST AT MP 6.48	REAR 124	07	043	WET 2	2 011	011	0	0 N N
00207 05/21/2012 5P MO Warrenton M	AN R HY OOG OPECON CONST AT MP 6 48	ETY 124 079	01	047 080	WET 1	1 011	011	0	ONV
00207 03/21/2012 31 HO Warrenton M	M R HI 009, OREGON CONST AT ME 6.40	DEAD	07	047,0000	, van	0 1 1	011	0	1 N N
00402 11/00/2010 4P FK Wallencoll M	N R HI 009, OREGON CORST RI MF 0.49	NEAR	07 01	043 041	URI 2	2 011	011	0	L IN IN 1 NT NZ
00492 11/09/2010 4P TU Warrenton M	IN K HI UU9, UKEGUN CUAST AT MP 0.31	KLAK	07,01	043,041	WET 2	2 011	OII	0	L IN X
0034/08/08/2012 IP WE Warrenton M	IN R HY UU9, OREGON COAST AT MP 6.51	REAR UI3	07,27	043,016	DRY .	3 011	011	0	5 N N
00469 10/01/2013 5P TU Warrenton M	IN K HY UU9, OREGON COAST AT MP 6.51	REAR	07,27	U43,U16	DRY 2	2 011	011	0	UNN
00636 12/30/2014 3P TU Warrenton M	IN R HY U09, OREGON COAST AT MP 6.51	REAR	07	043	DRY 2	2 011	011	0	l N N
00029 01/22/2011 UNK SA Warrenton M	1N R HY 009, OREGON COAST AT MP 6.51	FIX 058,079,086	33,10	051,080,081	WET 1	1 011		0	1 Y N
00198 05/28/2010 12P FR Warrenton M	1N R HY 009, OREGON COAST AT MP 6.53	REAR	07	043	WET 2	2 011	011	0	2 N N
00397 08/21/2014 12P TH Warrenton M	IN R HY 009, OREGON COAST AT MP 6.53	REAR	07	043	DRY 2	2 011	011	0	0 N N
00628 12/26/2014 10A FR Warrenton M	IN R HY 009, OREGON COAST AT MP 6.54	REAR 013	27	016	WET 4	4 011	011	0	2 N N
90628 12/26/2014 10A FR Warrenton M	IN R HY 009, OREGON COAST AT MP 6.54	REAR 013	27	016	WET 4	4 011	011	0	2 N N
00304 07/05/2010 12P MO Warrenton M	IN R HY 009, OREGON COAST AT MP 6 55	REAR	07.27	043.016	DRY '	2 011	011	0	1 N N
0.0001 01/02/2013 /P WE Warrenton	IN D HY OOG ODECON COASE AT MD 6 55	DEVD	07	0.26	, vau	2 011	011	0	2 11 11
00471 10/12/2012 12D CN Marriellon	MI D UV 000, OREGON COASE AT ME 0.JJ	NEAR	22	020	DDV /	- UII	011	0	ען איז ג זע דע א
00025 00/11/0010 ED TH H	IN K HI UUY, UKEGUN CUAST AT MP 0.33	KLAK	22	U1/	UKI 2		UII 011	0	H N N
UUU35 U2/11/2010 5P TH Warrenton M	AN K HY UU9, OREGON COAST AT MP 6.56	REAR 124,013	07,27	U43,U16	WET .	5 UII	UII	U	3 N N
00599 12/22/2010 6P WE Warrenton M	IN K HY UU9, OREGON COAST AT MP 6.56	REAR	27	UT0	WET 2	2 011	011	0	2 N N
00445 10/04/2011 4P TU Warrenton M	IN R HY 009, OREGON COAST AT MP 6.56	SS-O	06	045	DRY 2	2 011	011	0	0 N N
00230 06/16/2011 8P TH Warrenton M	IN R HY 009, OREGON COAST AT MP 6.57	PED	02	029	DRY 1	1 011		0	1 N N
00011 01/05/2010 5P TU Warrenton M	IN R HY 009, OREGON COAST AT MP 6.57	REAR 124	07	026	WET 2	2 011	011	0	1 N N
00383 08/24/2010 4P TU Warrenton M	IN R HY 009, OREGON COAST AT MP 6.57	REAR	07	043	DRY 2	2 011	011	0	0 N N

City of Warrenton

L L L L L L L L L L L L L L L L L L L			М				Т		
No. No. <th></th> <th></th> <th>СL</th> <th></th> <th></th> <th></th> <th>0</th> <th>F</th> <th>PEOPLE</th>			СL				0	F	PEOPLE
I J			O G				Т		S
I D F T NAME D Y CUTTY NAME T P CARANT CUTL T CARANT CUTL T D C D L D L D L D L D L D <thd< td=""><td>T</td><td></td><td>M</td><td></td><td></td><td></td><td>9</td><td></td><td>K P</td></thd<>	T		M				9		K P
BARFAL M X COLINTY OR N Y CALL X S CALL X S CALL	± T	D	יי ס יי ס					UTCIE	
Date: B Y COUNT MODE D P CRADIC Display <				0011				D (OFIN	IIAE
NO DATE Y CATT KAZ Y CAMUL CAMUL <td>SERIAL M</td> <td>A *COUNTY OR</td> <td>N Y</td> <td>COLL</td> <td>~~~~~</td> <td></td> <td>R E TY</td> <td>P/OWN</td> <td></td>	SERIAL M	A *COUNTY OR	N Y	COLL	~~~~~		R E TY	P/OWN	
00442 09/27/2010 12 mod Mode Static Correction MN N HT 003, OBSCOM CORAT AT NE 6.57 REAR 07 043 D(012) 0.1 mit 00104 01/210/2011 12 mod Matteration MR T 003, OBSCOM CORAT AT NE 6.57 REAR 07 043 RET 2 010 CI 0.1 mit 00114 01/210/2011 13 mod Matteration MR T NO 01/2000<	NO DATE E	Y CITY NAME	T P CRASH LOCATION	TYPE EVENT	CAUSE	ERROR	F. H #1	#2	LJCE
0.0465 11.027/2010 11.4 11.027/2010 11.4 11.0 0.54 10.74 0.74	00442 09/27/2010 12P	MO Warrenton	MN R HY 009, OREGON COAST AT MP 6.57	REAR	07	043	DRY 2 01	1 011	0 0 N N
00108 01/10/2011 12 100 0107	00486 11/02/2010 11A	TU Warrenton	MN R HY 009, OREGON COAST AT MP 6.57	REAR 013	10	026	DRY 3 01	1 011	0 1 N N
02546 02547 02567 PEAR 07 0256 0257 PEAR 07 0256 011010 0 0 N 02477 054727 0547 0547 0557 PEAR 07 016407 054727 011010 0 N N 02450 056727 PEAR 0256 PEX 0211011 0 N N 0450 056727 PEAR 021 011010 0 N N 0450 056727 PEAR 025 DEV 011010 0 N N 0454 05674 DEV DEV 011010 0 N N 0454 DEV	00018 01/10/2011 3P	MO Warrenton	MN R HY 009, OREGON COAST AT MP 6 57	REAR	07	026	DRY 2 01	1 011	0 0 N N
02214 04/01/2012 11.4 HE ATT 005, ORGEN COART AT NE 6.57 HEAR 124 01 043 New T 2 011 01 0 N 06437 H9/04/2013 35 TH MARCHARD NN <n<ht 6.57<="" at="" coart="" ne="" orgen="" td="" v05,=""> RLAR 124 07,01 043,04 DN Y 2 011 01 0 N 06437 H9/04/2014 6.5 NN<n 6.57<="" at="" coart="" ht="" ne="" orgen="" td="" v05,=""> RLAR 124 07,01 043,0 DNY 2 011 0 N N 0439 M1/01/2014 5.5 RLAR 124 07,0 043 DNY 2 011 0 N N 0.0 N N</n></n<ht>	00546 12/09/2011 1P	FB Warrenton	MN R HY 009 ORECON COAST AT MP 6 57	REAR	07 27	043 016	DRY 2 01	1 011	0 1 N N
000000000000000000000000000000000000	00214 06/01/2012 11	FR Warrenton	MN R HY 009, ORECON COAST AT MR 0.57	DEAD 124	07,27	043	WET 2 01	1 011	
0442 09/15/2013 11 30 WARTENED MN R HI 005. CHEGON COAST AT MF 6.57 PARAMELLA 07.01. 043.047 PART 2 010 101 0 0 N N 0452 09/03/2014 35 PAR WARTENED MN R HI 005. CHEGON COAST AT MF 6.57 PARAME 27.14 016.044 DBY 2 010 101 0 0 N N 0454 99/03/2014 13 N RK WARTENED MN R HI 005. CHEGON COAST AT MF 6.57 PARAME 07 043 DBY 2 010 101 0 0 N N 0464 90/24/2013 11A KK WARTENED MN R HI 005. CHEGON COAST AT MF 6.57 PARAME 02 02 028 DBY 2 010 101 0 0 N N 0464 90/24/2013 11A KK WARTENED MN R HI 005. CHEGON COAST AT MF 6.57 PARAME 02 07 043 DBY 2 010 101 0 1 N N 0464 90/24/2013 11A KK WARTENED MN R HI 005. CHEGON COAST AT MF 6.57 PARAME 02 07 043 DBY 2 010 101 0 0 N N 0464 90/24/2012 11M 00 WARTENED MN R HI 005. CHEGON COAST AT MF 6.58 PARAME 02 07 043 DBY 2 010 101 0 0 N N 00152 04/13/2012 4P UT WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 01,77 043,016 DBY 2 011 011 0 0 N N 00267 04/03/2012 4P UT WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 01,77 043,016 DBY 2 011 011 0 0 N N 0033 00/12/2014 4F W WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 07,70 043 DBY 2 010 11 0 0 N N 0035 02/04/2012 4B W WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 07,70 043 DBY 2 010 11 0 0 N N 0035 02/04/2012 4B W WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 07,70 043 DBY 2 010 11 0 0 N N 0035 02/04/2012 4B W WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 07,70 043 DBY 2 010 11 0 0 N N 0035 02/04/2012 4B W WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 07, 043 DBY 2 010 11 0 0 N N 0036 02/14/2012 4B W WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 07, 043 DBY 2 010 10 0 N N 0036 02/14/2010 2B AK WARTENED MN R HI 005. CHEGON COAST AT MF 6.63 PARAME 07, 043 DBY 2 010 10 0 0 N N 0036 02/14/2010 2B AK WARTENED MN R HI 005. CHEGON COAST AT MF 6.83 PARAME 07, 043 DBY 2 010 10 0 0 N N 0036 02/14/2010 2B AK WARTENED MN R HI 005. CHEGON COAST AT MF 6.83 PARAME 07, 043 DBY 2 010 10 0 0 N N 0036 02/14/2010 2B AK WARTENED MN R HI 005. CHEGON COAST AT MF 6.83 PARAME 07, 043 DBY 2 010 10 0 N N 0036 02/14/2010 2B	00214 00/01/2012 11A	TH Warrenton	MN R HY 000, OREGON COAST AT ME 0.57	DEAD	07	026	WEI 2 01	1 011	
00000 0000000 00000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000000000000000000000000000	00347 0070072013 35	IU Warrenten	MN R HI 009, OREGON COAST AT ME 0.57	REAR DEAD 104	07 01	020	DRI 2 01 WEE 2 01	1 011	
0.0000 0.000000 0.000000 <	0042/09/13/2013 SP	SU Warrenton	MN R HI 009, OREGON COASI AI MP 0.57	REAR 124	07,01	043,047	WEI 2 UI	1 011	
Under Dy US_ALLE 3.9 Each J Lab J Lab J Lab	00400 08/22/2014 6A	FR Wallenton	MN R HI 009, OREGON COASI AI MP 0.57	REAR	27,14	010,044	DRI 2 01	1 011	
$ \begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	00432 09/03/2014 SP	WE Warrenton	MN R HY 009, OREGON COAST AT MP 6.57	REAR	07	043	DRI 2 01	1 011	0 0 N N
UD48 UD47 UD48 UD48 <th< td=""><td>00499 10/08/2014 11A</td><td>WE Warrenton</td><td>MN R HY 009, OREGON COAST AT MP 6.57</td><td>55-0</td><td>13</td><td>045</td><td>DRY 2 01</td><td>1 011</td><td>UUNN</td></th<>	00499 10/08/2014 11A	WE Warrenton	MN R HY 009, OREGON COAST AT MP 6.57	55-0	13	045	DRY 2 01	1 011	UUNN
Dills Division MR H Dills Outsol Division Division <thdivision< th=""> <thdivision<< td=""><td>00443 09/24/2013 IOA</td><td>TU Warrenton</td><td>MN R HY UU9, OREGON COAST AT MP 6.57</td><td>TURN</td><td>02</td><td>028</td><td>DRY 2 01</td><td>1 011</td><td>UINN</td></thdivision<<></thdivision<>	00443 09/24/2013 IOA	TU Warrenton	MN R HY UU9, OREGON COAST AT MP 6.57	TURN	02	028	DRY 2 01	1 011	UINN
01504 11/03/2012 6* 5* N Marrenton MN H Y 005, 00, 00, 00, 00, 00, 00, 00, 00, 00,	00153 04/16/2012 3P	MO Warrenton	MN R HY 009, OREGON COAST AT MP 6.58	REAR 092	07	026	DRY 2 01	1 011	0 1 N N
D0162 04/14/2010 IP WE Marrenton MN R HY 009, OREGON COAST AT MY 6.61 EEAR 07.27 043,016 DRY 2 011 01 0 N N D0264 07/37/2012 4P MV Marrenton MN R HY 009, OREGON COAST AT MY 6.66 EEAR 07.27 043,016 DRY 2 011 01 0 N N D0264 07/37/2014 4P MV Marrenton MN R HY 009, OREGON COAST AT MY 6.66 EEAR 07.27 043,016 DRY 2 011 01 0 N N D0345 04/04/2012 4P W Marrenton NN R HY 009, OREGON COAST AT MY 6.76 EEAR 07.27 043,016 DRY 2 011 01 0 N N D0142 05/07/2012 9A W Marrenton NN R HY 009, OREGON COAST AT MY 6.83 EEAR 07.7 043,016 DRY 2 011 0 N N D0142 05/07/2012 9A W Marrenton NN R HY 009, OREGON COAST AT MY 6.83 EEAR 07.7 043,016 DRY 2 011 0 N N D0142 05/37/2010 19 80 Marrenton NN R HY 009, OREGON COAST AT MY 6.83 EEAR 07.7 016,026 DRY 2 011 0 <th< td=""><td>00504 11/03/2012 6P</td><td>SA Warrenton</td><td>MN R HY 009, OREGON COAST AT MP 6.58</td><td>REAR</td><td>07</td><td>043</td><td>WET 2 01</td><td>1 011</td><td>0 1 N N</td></th<>	00504 11/03/2012 6P	SA Warrenton	MN R HY 009, OREGON COAST AT MP 6.58	REAR	07	043	WET 2 01	1 011	0 1 N N
00267 07/03/2012 4 P TU Warrenton NN R HY 009, OREGON COAST AT MP 6.63 REAR 07,27 043,016 DRY 2 011 0 0 N N 00041 0/25/2014 4 P W Warrenton NN R HY 009, OREGON COAST AT MP 6.66 REAR 124,013 07 043 DRY 3 011 01 0 N N 00136 0/21/2011 1A W W Warrenton NN R HY 009, OREGON COAST AT MP 6.76 REAR 013 07 043 DRY 3 011 01 0 N N 00136 0/21/4/2011 3 P W Warrenton NN R HY 009, OREGON COAST AT MP 6.75 REAR 013 07 043 DRY 2 011 01 0 N N 00126 0/01/2011 3 P W Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 27 043 DRY 2 011 01 0 N N 00245 0/21/4/2011 3 P W Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 01 0 N N 00340 0/21/2011 3 P S W Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07	00162 04/14/2010 1P	WE Warrenton	MN R HY 009, OREGON COAST AT MP 6.59	REAR	07,27	043,016,042	DRY 2 01	1 011	0 0 N N
00040 02/25/2013 4P MO Warrenton MN R HY 009, GREGON COAST AT MP 6.66 REAR 0.13 07 0.43 NET 3 0.11 01 0 0 N N 00031 00/27/2014 4P MK Warrenton MN R HY 009, GREGON COAST AT MP 6.76 REAR 0.13 07 0.43 DRY 3 0.11 0 0 N N 00132 00/07/2012 9A MW Warrenton MN R HY 009, GREGON COAST AT MP 6.77 REAR 0.13 07 0.43 DRY 3 0.11 0 0 N N 00126 00/07/2012 9A Warrenton MN R HY 009, GREGON COAST AT MP 6.83 REAR 0.7 0.43 DRY 2 0.11 0 N N 00126 03/31/2010 1P SV Warrenton MN R HY 009, GREGON COAST AT MP 6.83 REAR 0.7 0.43 DRY 2 0.11 0.1 <n< td=""> N 00340 08/32/2010 3P SX Warrenton MN R HY 009, GREGON COAST AT MP 6.83 REAR 0.7 0.43 DRY 2 0.11 0.1<n< td=""> N 0.030 0.8/22/2011 SE DRY 2 0.10 1.0<n< td=""> N<td>00267 07/03/2012 4P</td><td>TU Warrenton</td><td>MN R HY 009, OREGON COAST AT MP 6.61</td><td>REAR</td><td>07,27</td><td>043,016</td><td>DRY 2 01</td><td>1 011</td><td>0 1 N N</td></n<></n<></n<>	00267 07/03/2012 4P	TU Warrenton	MN R HY 009, OREGON COAST AT MP 6.61	REAR	07,27	043,016	DRY 2 01	1 011	0 1 N N
00419 08/27/2014 4P WE Warrenton MN R HY 099, OREGON COAST AT MP 6.76 REAR 013 07 043 DRY 3 011 011 0 N N 00136 0/04/2012 4P WE Warrenton MN R HY 099, OREGON COAST AT MP 6.77 REAR 013 07 043 DRY 2 011 011 0 N N 00136 02/14/2012 4P WE Warrenton MN R HY 099, OREGON COAST AT MP 6.72 CTH 035 12 DRY 1 0111 0 N N 00136 02/14/2010 2P WE Warrenton MN R HY 099, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 0 N N 00349 08/25/2010 JP S Marrenton MN R HY 099, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 0 N N 00370 08/30/2011 9A TU Warrenton MN R HY 099, OREGON COAST AT MP 6.83 REAR 07 046 DRY 2 011 011 0 N N 00370 08/30/2011 9A TU Warrenton MN R HY 099, OREGON COAST AT MP 6.83 REAR 07 046 DRY 2 011 011 0 N N 00370 08/30/2011 9A TU Warrenton MN R HY 099, OREGON COAST AT MP 6.83 <td< td=""><td>00084 02/25/2013 4P</td><td>MO Warrenton</td><td>MN R HY 009, OREGON COAST AT MP 6.63</td><td>REAR 124,013</td><td>07</td><td>043</td><td>WET 3 01</td><td>1 011</td><td>02NN</td></td<>	00084 02/25/2013 4P	MO Warrenton	MN R HY 009, OREGON COAST AT MP 6.63	REAR 124,013	07	043	WET 3 01	1 011	02NN
0333 07/31/2013 10A WE Marrentom NN R HY 009, ORECON COAST AT MP 6.76 REAR 07, 27 043, 016 DV 2 011 01 0 N N 00126 04/04/012 4 P WE Marrentom NN R HY 009, ORECON COAST AT MP 6.82 OTH 035 12 DV 1 011 01 0 N N 00126 02/07/2012 9A MO MARTENTOM NN R HY 009, ORECON COAST AT MP 6.82 OTH 035 12 DV 1 011 01 0 N N 00126 02/14/2010 3P SU Marrentom NN R HY 009, ORECON COAST AT MP 6.83 REAR 07 043 DKY 2 011 011 0 N N 00340 08/25/2010 1P SU Marrentom NN R HY 009, ORECON COAST AT MP 6.83 REAR 07 043 DKY 2 011 011 0 N N 00340 08/32/2011 3P SU Marrentom NN R HY 009, ORECON COAST AT MP 6.83 REAR 07 043 DKY 2 011 011 0 N N 00310 02/23/2011 3P SU Marrentom NN R HY 009, ORECON COAST AT MP 6.83 REAR 07 043 DKY 2 011 011 0 N N 00310 02/22/2013 3P SU Marrentom NN R HY 009, ORECON COAST AT MP 6.83 REAR 07 043 DKY 2 011 011 0 N N 00116 04 02	00419 08/27/2014 4P	WE Warrenton	MN R HY 009, OREGON COAST AT MP 6.66	REAR 013	07	043	DRY 3 01	1 011	0 0 N N
00136 04/04/2012 4F WE Marrentom NN R HY 009, ORECON COAST AT NF 5.77 REAR 013 07 043 WET 3 011 0 0 2 N N 00036 02/14/2010 3F SU Marrentom NN R HY 009, ORECON COAST AT NF 5.83 REAR 27 016,026 DNY 2 011 0 0 N N 00036 02/14/2010 3F SU Marrentom NN R HY 009, ORECON COAST AT NF 5.83 REAR 07 043 DNY 2 011 01 0 N N 00349 08/15/2010 1F SU Marrentom NN R HY 009, ORECON COAST AT NF 5.83 REAR 07 043 DNY 2 011 01 0 N N 00320 08/23/2010 3F SU Marrentom NN R HY 009, ORECON COAST AT NF 5.83 REAR 07 043 DNY 2 011 01 0 N N 00070 02/32/2012 3F TH Marrentom NN R HY 009, ORECON COAST AT NF 5.83 REAR 07 043 DNY 2 011 01 0 N N 00071 02/23/2012 5F TH Marrentom NN R HY 009, ORECON COAST AT NF 5.83 REAR 124 07 043 DNY 2 011 01 0 N N 000710 02/32/2012 1F SU Marrentom NN R HY 009, ORECON COAST AT NF 5.83 REAR 124 07 043 DNY 2 011 01 0 N N	00337 07/31/2013 10A	WE Warrenton	MN R HY 009, OREGON COAST AT MP 6.76	REAR	07,27	043,016	DRY 2 01	1 011	0 0 N N
0162 05/07/2012 9A MO Marrenton MN N MO 0020 02/14/201 3F MO N	00136 04/04/2012 4P	WE Warrenton	MN R HY 009, OREGON COAST AT MP 6.77	REAR 013	07	043	WET 3 01	1 011	02NN
00036 02/14/2010 3P SU Marrenton NN R H Y 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 01 N 00340 08/15/2010 1P SU Marrenton NN R H Y 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 01 0 N N 00300 08/26/2010 3P SU Marrenton NN R H Y 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 01 N N 00370 08/20/2011 ST Marrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 01 0 N N 00370 08/20/2011 A marrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 099 07 043 DRY 2 011 01 0 N N 00370 08/20/2011 SP Marrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011<01	00182 05/07/2012 9A	MO Warrenton	MN R HY 009, OREGON COAST AT MP 6.82	ОТН 035	12		DRY 1 01	1	0 0 N N
00126 03/31/2010 12P WE Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 01 0 1 N N 00349 08/28/2010 3P SA Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 01 0 N N 00124 03/27/2011 5P SU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 01 0 N N 0017 08/30/2011 9A TU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 01 0 N N 00011 02/23/2012 5P TH Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 099 27 016 DRY 2 011 011 01 0 N N 00050 10/12/2014 12P SU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 011 0 0 N N 00120 05/06/2012 12P SU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 011 0 0 N N 00120 05/06/2012 12P SU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 0 0 N N 00120 05/06/2012 12P SU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 0 <td>00036 02/14/2010 3P</td> <td>SU Warrenton</td> <td>MN R HY 009, OREGON COAST AT MP 6.83</td> <td>REAR</td> <td>27</td> <td>016,026</td> <td>DRY 2 01</td> <td>1 011</td> <td>0 0 N N</td>	00036 02/14/2010 3P	SU Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR	27	016,026	DRY 2 01	1 011	0 0 N N
00349 08/15/2010 1F SU Marrenton MN R HY 009, OREGON COAST AT MF 6.83 REAR 07 043 DRY 2 011 011 0 0 N N 00340 08/28/2010 3F SN Marrenton MN R HY 009, OREGON COAST AT MF 6.83 REAR 07 016 DRY 2 011 011 0 N N 00370 08/30/2011 AU Warrenton MN R HY 009, OREGON COAST AT MF 6.83 REAR 07 043 DRY 2 011 011 0 N N 00014 01/28/2013 2P TH Marrenton MN R HY 009, OREGON COAST AT MF 6.83 REAR 07 043 DRY 2 011 011 0 N N 00044 01/28/2013 2P MO Marrenton MN R HY 009, OREGON COAST AT MF 6.83 REAR 07 043 DRY 2 011 011 0 N N 00163 01/12/2014 12P SU Marrenton MN R HY 009, OREGON COAST AT MF 6.83 REAR 07 026 DRY 2 011 011 0 N N N 00210 05/06/2012 1P SU Marrenton MN R HY 009, OREGON COAST AT MF 6.83 REAR 07 043 DRY 2 011 011 0 N N 00216 01/12/2014 </td <td>00126 03/31/2010 12P</td> <td>WE Warrenton</td> <td>MN R HY 009, OREGON COAST AT MP 6.83</td> <td>REAR</td> <td>07</td> <td>043</td> <td>DRY 2 01</td> <td>1 011</td> <td>0 1 N N</td>	00126 03/31/2010 12P	WE Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR	07	043	DRY 2 01	1 011	0 1 N N
00300 08/28/2010 3F 5A Marreton NN R HY 009, OREGON COAST AT MF 6.83 REAR 27,07 016,026 DRY 2 011 01 N N 00124 037/7/2011 5F SU Warreton NN R HY 009, OREGON COAST AT MF 6.83 REAR 07 026 DRY 2 011 01 N N 00071 02/23/2012 5F TH Warreton NN R HY 009, OREGON COAST AT MF 6.83 REAR 07 043 DRY 2 011 01 N N 00071 02/23/2013 2F TH Warreton NN R HY 009, OREGON COAST AT MF 6.83 REAR 07 043 WZ 2 011 01 N N 0 N N 00104 01/28/2013 2F TH Warreton NN R HY 009, OREGON COAST AT MF 6.83 REAR 07 026 DRY 2 011 0 N N 0 N N 00104 01/28/2013 2F TH Warreton NN R HY 009, OREGON COAST AT MF 6.83 REAR 07 026 DRY 2 011 0 N N 0 N N 0163 04/5/2013 DY 43 DRY 2 011 01< N N	00349 08/15/2010 1P	SU Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR	07	043	DRY 2 01	1 011	0 0 N N
0124 03/27/2011 5P SU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 011 0 1 N N 00370 08/30/2011 9A TU Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 011 0 1 N N 00071 02/23/2012 5P TH Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 099 27 016 DRY 2 011 011 0 1 N N 00044 01/28/2013 2P MO Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 09 26 DRY 2 011 011 0 1 N N 00163 04/12/2014 1P SU Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 011 0 0 N N 00163 04/12/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 011 0 0 N N 00163 04/12/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 07 043 DRY 2 011 011 0 0 N N 00528 11/06/2012 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 013 07,27 043,016 WET 2 011 011 0 0 N N 00624 12/23/2014 4P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 013 07,27 043,016 WET 2 011 011 0 0 N N 00528 11/06/2012 1P TU Warrenton MN R HY 009, OREGON COAST	00390 08/28/2010 3P	SA Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR	27,07	016,026	DRY 2 01	1 011	0 0 N N
00370 08/30/2011 9A TU Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 07 043 DRY 2 011 01 0 N N 00071 02/3/2012 5P TH Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 099 27 016 DRY 2 011 011 0 0 N N 00044 01/22/2014 12P SU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 29 026 DRY 2 011 011 0 N N 00163 04/15/2010 5P TH Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 01<	00124 03/27/2011 5P	SU Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR	07	026	DRY 2 01	1 011	0 1 N N
00071 02/23/2012 5P TH Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 0.9 2 0.1 DHY 2 0.1 0.1 0 1 N <td< td=""><td>00370 08/30/2011 9A</td><td>TU Warrenton</td><td>MN R HY 009, OREGON COAST AT MP 6.83</td><td>REAR</td><td>07</td><td>043</td><td>DRY 2 01</td><td>1 011</td><td>0 0 N N</td></td<>	00370 08/30/2011 9A	TU Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR	07	043	DRY 2 01	1 011	0 0 N N
00044 01/28/2013 2P MO Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 29 026 DRY 2 011 01 N N 00510 05/06/2012 12P SU Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 29 026 DRY 2 011 01 0 N 0010 05/06/2012 12P SU Warrenton MN R HY 009, OREGON COAST AT MP 6.84 REAR 07 026 DRY 2 011 01 N N 00439 04/07/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 01,07 043 DRY 2 011 01 0 N N 0508 11/06/2012 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 014 01,07 043 <	00071 02/23/2012 5P	TH Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR 099	27	016	DRY 2 01	1 011	0 2 N N
00503 10/12/2014 12P SU Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 29 026 DRY 2 011 01 0 N N 00210 05/06/2012 12P SU Warrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 01 0 N N 00163 04/15/2010 F HW arrenton MN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 01 0 N N 00498 10/07/2014 IP TU Warrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 07 043 DRY 2 011 01 0 N N 00508 11/06/2012 IP TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 124 01,07 043,016 WET 2 011 01 0 N N 00624 12/23/2014 4P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.92 REAR 07 043 DRY 2 011 01 0 <n n<="" td=""> 00364 08/13/2013 11A TU Warrenton MN R HY 009, OREGON COAST AT MP 6.9</n>	00044 01/28/2013 2P	MO Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR 124	07	043	WET 2 01	1 011	0 1 N N
00110 05/06/2012 12P SU Warrenton NN R HY 009, OREGON COAST AT MP 6.83 REAR 07 026 DRY 2 011 01 0 N N 00163 04/15/2010 5P TH Warrenton MN R HY 009, OREGON COAST AT MP 6.84 REAR 07 026 DRY 2 011 01 0 N N 00163 04/15/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 07 043 DRY 2 011 01 0 N N 00508 11/06/2012 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 092 07 043, 042 WET 4 01 01 0 N N 005021 12/23/2014 4P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 124 01,07 047,043 WET 4 01 01 0 N N 00304 07/18/2012 5P KW Warrenton MN R HY 009, OREGON COAST AT MP 6.93 REAR 07 043 DRY 2 011 01 0 N N 00344 07/18/2012 5P FW Warrenton MN R HY 009,	00503 10/12/2014 12P	SIL Warrenton	MN R HY 009, OREGON COAST AT MP 6 83	BEAR	29	026	DRY 2 01	1 011	0 0 N N
Control Control <t< td=""><td>00210 05/06/2012 12P</td><td>SU Warrenton</td><td>MN R HY 009, OREGON COAST AT MP 6.83</td><td>REAR</td><td>07</td><td>026</td><td>DRY 2 01</td><td>1 011</td><td>0 0 N N</td></t<>	00210 05/06/2012 12P	SU Warrenton	MN R HY 009, OREGON COAST AT MP 6.83	REAR	07	026	DRY 2 01	1 011	0 0 N N
00379 08/20/2013 1P TU Marrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 07 043 DRY 2 011 01 0 N N 00498 10/07/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 07 043 DRY 2 011 01 0 N N 00508 11/06/2012 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.85 REAR 01,07 043,016 WET 4 011 0 N N 00523 12/23/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 01,07 043,016 WET 4 011 0 N N 00364 08/13/2013 11A TU Warrenton MN R HY 009, OREGON COAST AT MP 6.93 REAR 07 043 DRY 3 011 0 N N 00364 08/13/2011 3P FR Warrenton MN R HY 009, OREGON COAST AT MP 6.93 REAR 07 026 DRY 2 011 01 N N 0	00163 04/15/2010 5P	TH Warrenton	MN R HY 009 ORECON COAST AT MP 6.84	REAR	07	026	DRY 2 01	1 011	0 0 11 1
001498 10/07/2014 1P TU Warrenton MR HR W1 0050 ON 500 ON 500 ON 500 ON 500 ON 500 DRY 2 Oll 01 Oll 01 Oll 0 N N 00508 11/06/2012 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 013 O7,27 043,016 WET 4 Oll 01 0 N N 00624 12/23/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 013 O7,27 043,016 WET 4 Oll 01 0 N N 00624 12/23/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.89 SS-O 29,02 042,028 WET 2 011 01 0 N N 00334 07/18/2012 5P Warrenton MN R HY 009, OREGON COAST AT MP 6.93 REAR 07 026 DRY 2 011 01 0 N N 00535 11/30/2011 4P Warrenton MN R HY 009, OREGON COAST AT MP 7.03 REAR<	00379 08/20/2013 1P	TIL Warrenton	MN R HY 009 ORECON COAST AT MP 6.85	REAR	07	043	DRY 2 01	1 011	0 1 N N
00506 10/07/2012 11 10 NA R H1 000, OREGON COAST AT MP 6.87 REAR 124 01,07 047,043 WET 2 011 01 0 N N 00624 12/23/2014 4P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 103 07,27 043,016 WET 2 011 01 0 N N 00624 12/23/2014 1P TU Warrenton MN R HY 009, OREGON COAST AT MP 6.87 REAR 013 07,27 043,016 WET 2 011 01 0 N N 00364 08/13/2013 11A TU Warrenton MN R HY 009, OREGON COAST AT MP 6.92 REAR 07 043 DRY 2 011 01 0 N N 00364 08/15/2012 5P FR Warrenton MN R HY 009, OREGON COAST AT MP 6.93 REAR 07 043 DRY 2 011 01 0 N N 00535 113/0/2011 4P We Warrenton MN R HY 009, OREGON COAST AT MP 7.03 REAR 07 043 DRY 2 011 01 0	00498 10/07/2014 10	TU Warrenton	MN R HY OOG OPECON COAST AT MR 6.85	DEAD 092	07	043	DRI 2 01	1 011	
00030 11/00/2012 11 10 10 Malentoin MN R HY 009, OREGON COAST AT MP 6.87 REAR 113 01,01,01 </td <td>00509 11/06/2012 10</td> <td>TU Warrenten</td> <td>MN R HY OOG OPECON COAST AT MD 6.05</td> <td>DEAD 124</td> <td>01 07</td> <td>043</td> <td>WET 2 01</td> <td>1 014</td> <td></td>	00509 11/06/2012 10	TU Warrenten	MN R HY OOG OPECON COAST AT MD 6.05	DEAD 124	01 07	043	WET 2 01	1 014	
00023 12/23/2014 14 10 Walfention MN R H1 003 003 001 011 011 01	00508 11/00/2012 11	TU Warrenten	MN R HI 009, OREGON COAST AT ME 0.07	REAR 124	07,07	047,045	WEI 2 01	1 014	0 2 11 1
000344 12/23/214 11 11 10 Walfenton MN R H1 009, OREGON COAST AT MP 6.93 SS-0 29,02 042,028 WE 2 011 011 0 0 N N 00364 08/13/2012 5P WE Warrenton MN R HY 009, OREGON COAST AT MP 6.92 REAR 013 07 043 DRY 2 011 011 0 N N 00334 07/18/2012 5P WE Warrenton MN R HY 009, OREGON COAST AT MP 6.92 REAR 013 07 043 DRY 2 011 011 0 N N 00354 12/30/2011 4P WE Warrenton MN R HY 009, OREGON COAST AT MP 6.96 REAR 07 026 DRY 2 011 011 0 N N 00544 12/09/2011 3P F Warrenton MN R HY 009, OREGON COAST AT MP 7.03 REAR 07 026 DRY 2 011 011 0 N N 00249 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 011 0 N N 00223 06/11/2011 12P SW Warrenton MN R HY 009, OREGON C	00624 12/23/2014 4P	IU Warrenten	MN R HI 009, OREGON COASI AI MP 0.07	REAR UIS	20.02	043,010	WEI 4 01 WET 2 01	1 011	
00304 08/13/2013 11A 10 Warrenton MN R HY 009, OREGON COAST AT MP 6.92 REAR 07 043 DRY 2 011 01 0 1 N N 00304 07/18/2012 5P WE Warrenton MN R HY 009, OREGON COAST AT MP 6.93 REAR 07 043 DRY 2 011 01 0 N N 00239 06/15/2012 5P FR Warrenton MN R HY 009, OREGON COAST AT MP 6.96 REAR 07 026 DRY 2 011 01 0 N N 00544 12/09/2011 3P FR Warrenton MN R HY 009, OREGON COAST AT MP 7.03 REAR 07 043 DRY 2 011 01 0 N N 00249 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 011 0 N<	00024 12/23/2014 1P	TU Warrenton	MN R HI 009, OREGON COASI AI MP 0.09	55-0	29,02	042,020	WEI 2 UI	1 011	
00304 0/1/18/2012 SP We warrenton MN R HY 009, OREGON COAST AT MP 6.93 REAR 013 0/ 043 DRY 3 011 01 0 N N 00239 06/15/2012 SP FR Warrenton MN R HY 009, OREGON COAST AT MP 6.93 REAR 07 026 DRY 2 011 01 0 N N 00535 11/30/2011 4P WE warrenton MN R HY 009, OREGON COAST AT MP 7.03 REAR 07 026 DRY 2 011 01 0 N N 00544 12/09/2011 3P FR warrenton MN R HY 009, OREGON COAST AT MP 7.03 REAR 07 026 DRY 2 011 01 0 N N 00249 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 01 0 N N 00249 06/07/2013 12P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 01 0 N N 00223 06/11/2011 12P WE warrenton MN R HY 00	00364 08/13/2013 IIA	TU Warrenton	MN R HY 009, OREGON COAST AT MP 6.92	REAR	07	043	DRY 2 01	1 011	UINN
00239 06/15/2012 5P FR Warrenton MN R HY 009, OREGON COAST AT MP 6.96 REAR 07 026 DRY 2 011 01 0 N N 00535 11/30/2011 4P We Warrenton MN R HY 009, OREGON COAST AT MP 7.03 REAR 07 026 DRY 2 011 01 0 N N 00249 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.03 FIX 079,086 16 016,080,081 DRY 2 011 01 0 N N 00249 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 01 0 N N N N N N N N N N N N N N N N	00304 07/18/2012 5P	WE Warrenton	MN R HY UU9, OREGON COAST AT MP 6.93	REAR 013	07	043	DRY 3 01	1 011	UINN
00535 11/30/2011 4P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.03 REAR 07 026 DRY 2 011 01 0 2 N N 00544 12/09/2011 3P FR Warrenton MN R HY 009, OREGON COAST AT MP 7.03 FIX 07 026 DRY 2 011 01 0 N N 00249 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.04 REAR 07 043 DRY 2 011 01 0 N N 00251 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 01 0 N N 00223 06/11/2011 12P WA warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043, DRY 2 011 01 0 N N N N N N N N N	00239 06/15/2012 5P	FR Warrenton	MN R HY 009, OREGON COAST AT MP 6.96	REAR	07	026	DRY 2 01	1 011	0 0 N N
00544 12/09/2011 3P FR Warrenton MN R HY 009, OREGON COAST AT MP 7.03 FIX 079,086 16 016,080,081 DRY 1 011 0 0 N N 00249 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.04 REAR 07 043 DRY 2 011 01 0 N N 00251 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 01 0 N N 00249 08/07/2013 12P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 01 N N 00223 06/11/2011 12P SA Warrenton MN R HY 009, OREGON COAST AT MP 7.07 ANGL 04,02 020,016 WET 2 011 01 N N N N </td <td>00535 11/30/2011 4P</td> <td>WE Warrenton</td> <td>MN R HY 009, OREGON COAST AT MP 7.03</td> <td>REAR</td> <td>07</td> <td>026</td> <td>DRY 2 01</td> <td>1 011</td> <td>0 2 N N</td>	00535 11/30/2011 4P	WE Warrenton	MN R HY 009, OREGON COAST AT MP 7.03	REAR	07	026	DRY 2 01	1 011	0 2 N N
00249 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.04 REAR 07 043 DRY 2 011 01 0 N N 00251 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 026 UNK 2 011 01 0 N N 00349 08/07/2013 12P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 01 0 N N 00223 06/11/2011 12P SA Warrenton MN R HY 009, OREGON COAST AT MP 7.07 ANGL 04,02 020,016 WET 2 011 01 N N 00605 12/12/2014 6A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 ANGL 04,27 020,016 WET 2 011 01 N N 00288 <td>00544 12/09/2011 3P</td> <td>FR Warrenton</td> <td>MN R HY 009, OREGON COAST AT MP 7.03</td> <td>FIX 079,086</td> <td>16</td> <td>016,080,081</td> <td>DRY 1 01</td> <td>1</td> <td>OONN</td>	00544 12/09/2011 3P	FR Warrenton	MN R HY 009, OREGON COAST AT MP 7.03	FIX 079,086	16	016,080,081	DRY 1 01	1	OONN
00251 06/07/2010 4P MO Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 026 UNK 2 011 011 0 0 N N 00349 08/07/2013 12P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.05 REAR 07 043 DRY 2 011 011 0 1 N N 00223 06/11/2011 12P SA Warrenton MN R HY 009, OREGON COAST AT MP 7.07 ANGL 04,02 020,028 DRY 2 011 011 0 1 N N 00605 12/12/2014 6A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 ANGL 04,02 020,016 WET 2 011 011 0 1 N N 00288 07/14/2010 10A WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07,043,016 DRY 2 011 011 0 N N 00499 11/12/2010 9A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07,043,016 DRY 2 011 011 0 N N 00193 05/25/2011 3P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043,016 DRY 2 011 011 0 N N 00193 05/25/2011 3P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043,042 DRY 2 011 011 0 N N 00502 11/10/2011 5P TH Warrenton MN R HY 009,	00249 06/07/2010 4P	MO Warrenton	MN R HY UU9, OREGON COAST AT MP 7.04	REAR	07	043	DRY 2 01	1 011	UONN
0034908/07/201312PWEWarrentonMNRHY009,OREGONCOASTATMP7.05REAR07043DRY 20110101NN0022306/11/201112PSAWarrentonMNRHY009,OREGONCOASTATMP7.07ANGL04,02020,028DRY 20110101 <n< td="">N0060512/12/20146AFRWarrentonMNRHY009,OREGONCOASTATMP7.07ANGL04,27020,016WET 20110101<n< td="">N0028807/14/201010AWEWarrentonMNRHY009,OREGONCOASTATMP7.07REAR07,27043,016DRY 2011010NN0049911/12/20109AFRWarrentonMNRHY009,OREGONCOASTATMP7.07REAR07043,016DRY 2011010NNN<</n<></n<>	00251 06/07/2010 4P	MO Warrenton	MN R HY 009, OREGON COAST AT MP 7.05	REAR	07	026	UNK 2 01	1 011	0 0 N N
00223 06/11/2011 12P SA Warrenton MN R HY 009, OREGON COAST AT MP 7.07 ANGL 04,02 020,028 DRY 2 011 011 0 1 N N 00605 12/12/2014 6A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 ANGL 04,27 020,016 WET 2 011 011 0 1 N N 00288 07/14/2010 10A WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07,27 043,016 DRY 2 011 011 0 1 N N 00499 11/12/2010 9A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 27 016,026 WET 2 011 011 0 1 N N 00193 05/25/2011 3P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043 WET 2 011 011 0 1 N N 00502 11/10/2011 5P TH Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 092 07 043,042 DRY 2 011 011 0 0 N N	00349 08/07/2013 12P	WE Warrenton	MN R HY 009, OREGON COAST AT MP 7.05	REAR	07	043	DRY 2 01	1 011	0 1 N N
00605 12/12/2014 6A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 ANGL 04,27 020,016 WET 2 011 01 N N 00288 07/14/2010 10A WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07,27 043,016 DRY 2 011 01 N N 00499 11/12/2010 9A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07,27 043,016 DRY 2 011 01 N N 00193 05/25/2011 3P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043 WET 2 011 01 N	00223 06/11/2011 12P	SA Warrenton	MN R HY 009, OREGON COAST AT MP 7.07	ANGL	04,02	020,028	DRY 2 01	1 011	0 1 N N
00288 07/14/2010 10A WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07,27 043,016 DRY 2 011 011 0 0 N N 00499 11/12/2010 9A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 27 016,026 WET 2 011 011 0 1 N N 00193 05/25/2011 3P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043 WET 2 011 011 0 1 N N 00502 11/10/2011 5P TH Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 092 07 043,042 DRY 2 011 011 0 0 N N	00605 12/12/2014 6A	FR Warrenton	MN R HY 009, OREGON COAST AT MP 7.07	ANGL	04,27	020,016	WET 2 01	1 011	0 1 N N
00499 11/12/2010 9A FR Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 27 016,026 WET 2 011 011 0 1 N N 00193 05/25/2011 3P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043 WET 2 011 011 0 1 N N 00502 11/10/2011 5P TH Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 092 07 043,042 DRY 2 011 011 0 0 N N	00288 07/14/2010 10A	WE Warrenton	MN R HY 009, OREGON COAST AT MP 7.07	REAR	07,27	043,016	DRY 2 01	1 011	0 0 N N
00193 05/25/2011 3P WE Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043 WET 2 011 0 1 N N 00502 11/10/2011 5P TH Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 07 043, 042 DRY 2 011 01 N N	00499 11/12/2010 9A	FR Warrenton	MN R HY 009, OREGON COAST AT MP 7.07	REAR	27	016,026	WET 2 01	1 011	0 1 N N
00502 11/10/2011 5P TH Warrenton MN R HY 009, OREGON COAST AT MP 7.07 REAR 092 07 043,042 DRY 2 011 011 0 0 N N	00193 05/25/2011 3P	WE Warrenton	MN R HY 009, OREGON COAST AT MP 7.07	REAR	07	043	WET 2 01	1 011	0 1 N N
	00502 11/10/2011 5P	TH Warrenton	MN R HY 009, OREGON COAST AT MP 7.07	REAR 092	07	043,042	DRY 2 01	1 011	0 0 N N

City of Warrenton

						М								Г				
					С	L								C)	P	EOP	LE
					0	G								Г				S
		Т			М									S			K	P
		I	D		Р	Т								υV	VEH	ICLE	I I	ΙΑΕ
SERTAL		М	А	*COUNTY OR	N	Y				COLL				RF	TYP	/OWN	т. т	J L E
NO	DATE	E	Y	CITY NAME	Т	P CRASH	LOCATION			TYPE	EVENT	CAUSE	ERROR	FF	, #1	#2	LJ	JCD
00202	05/21/2012	3P CD	MO	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	REAR		07	026	WET 2	2 011	011	0	ONN
00460	10/05/2012	6P	FR	Warrenton	MN	R HY 009,	OREGON COAST	AT MP	7.07	REAR		07	043	DRI 2	2 011	011	0	ONN
00599	12/2//2012	4 P	TH	Warrenton	MIN	R HY 009,	OREGON COAST	AT MP	7.07	REAR	010	07	043	DRI 2	2 011	011	0	UNN
00021	01/18/2013	5 P	FR	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	REAR	013	07,27	043,016	DRY :	5 UII	011	0	U N N
001/9	05/03/2013	8 P	FR	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	REAR	013	22	017	DRY :	5 UII	011	0.	3 N N
00327	0//24/2013	5 P	WE	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	REAR	013	07,27	043,016	DRY :	5 UII	011	0	UNN
00248	06/13/2014	4 P	FR	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	REAR	010	07	043	DRY 2	2 011	011	0 2	2 N N
00416	08/25/2014	1P 5D	MO	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	REAR	013	07	043	DRY :	5 UII	011	0	UNN
00101	03/04/2011	5 P	FR	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	TURN		02	028	WET 2	2 011	011	0 2	2 N N
00419	09/08/2012	3 P	SA	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	TURN		27,02	016,028	DRY 2	2 011	011	0	UNN
0046/	09/20/2014	8 P	SA	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	TURN		04	020	DRY 2	2 011	011	0	UNN
00591	12/04/2014	5 P	TH	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	TURN	0.5.0	08	006	WET 2	2 011	011	0	UNN
00138	04/10/2010	4A	SA	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.07	FIX	058	16	016,081	DRY		011	0	UNN
00590	12/21/2012	5 P	FR	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.08	REAR	013	07	043	DRY :	5 UII	011	0 2	2 N N
00140	04/04/2011	3P 15	MO	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.09	REAR	124	07,01	043,041	WET 2	2 011	011	0	UNY
00531	10/25/2014	1P 2D	SA	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.09	REAR		07	026	WET 2	2 011	011	0.	
00366	08/13/2013	3P 15	TU	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.11	REAR		07	042	DRY 2	2 011	011	0	
00290	07/05/2013	1 P	FR	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.13	REAR	092	07,27	043,016	DRY 2	2 011	011	0 2	2 N N
00076	03/08/2010	112	MO	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.16	REAR		07	043	DRY 2	2 011	011	0.	
00360	08/08/2014	11A	FR	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.32	REAR	092	07,01	043,047	DRY 2	2 011	011	0	INY
00243	06/11/2014	TOP	WE	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.51	FIX	035,044,058	32,30	052,050,080	DRY 1			0	UNY
00247	06/13/2013	9 P	TH	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.68	OTH	035	12	0.4.0.01.6	DRY		011	0	UNN
00313	0//18/2013	3P CD	TH	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	7.99	REAR	013	07,27	043,016	DRY :	5 UI3	011	0 2	2 N N
00146	04/19/2013	6P 1 D	FR	Warrenton	MN	R HY 009,	OREGON COAST	AT MP	8.00	HEAD		05	039	WET :	5 UII	011	2 .	
00554	11/21/2013	1P 2D	TH	Warrenton	MN	R HY 009,	OREGON COAST	AT MP	8.03	REAR		07,27	043,016	DRI 2	2 011	011	0	
00230	06/03/2014	3P	TU	Warrenton	MN	R HY 009,	OREGON COAST	A'I' MP	8.04	REAR		29	026	DRY 2	2 011	011	0	ONN
00335	0//29/2014	4 P	TU	Warrenton	MN	R HY 009,	OREGON COAST	AT MP	8.04	TURN		02	028	DRI 2	2 011	011	0	
00476	09/24/2014	8A 1 D	WE	Warrenton	MN	R HY 009,	OREGON COAST	AT MP	8.04	TURN		02	028	WET 2	2 011	011	0.	
00555	11/21/2013	117	TH	Warrenton	MN	R HY 009,	OREGON COAST	AT MP	8.04	REAR		07	043	DRI 2	2 011	011	0	
00504	11/13/2010	ALL	SA	Warrenton	MN	R HY 009,	OREGON COAST	AT MP	8.05	REAR		07	043	WET 2	2 011	011	0	
00008	12/02/2011	2 P 1 2 D	FK C7	Warrenton	MIN	R HI 009,	OREGON COAST	AT MP	8.05	REAR		07	043	WET 2	2 011	011	0	ONN
000007	12/08/2012	12P	SA	Warrenton	MIN	R HI 009,	OREGON COAST	AT MP	8.05	REAR	000	07 07	043	WET 2	2 011	011	0	UNN 1NN
00332	07/28/2013	2 P 1 2 D	50	Warrenton	MIN	R HI 009,	OREGON COAST	AT MP	8.05	REAR	003	01,21	043,010	DRI 2	2 011	011	0	IN N OVN
00279	07/03/2014	12P 2D	TH	Warrenton	MIN MNI	R HI 009,	OREGON COAST	AT MP	8.05	KEAK		04 05 10	020 020 016	DRI 2	2 011	011	0.	2 I N O N N
00127	03/31/2010	3P 107	WE	Warrenton	MIN MNI	R HI 009,	OREGON COAST	AT MP	8.05	55-M		04,05,10	020,039,010	DRI 3	011	011	0	ON N ON N
00109	04/24/2010	10A	SA	Warrenton	MNT .	R HI 009,	OREGON COASI	AI MP	0.05	TURN		02 02	020	DRI 2	2 011	011	0.	ZININ 1 NIN
00204	07/10/2010	121	5A ED	Warrenton	MNT .	R HI 009,	OREGON COASI	AI MP	0.05	TURN		00,02	000,003,020	DRI 2	2 091	011	0	N N C
00407	09/03/2010	4 P 2 D	FR	Warrenton	IMIN	R HI 009,	OREGON COAST	AT MP	8.05	TURN		02	028	DRI 2	2 011	011	0.	
00279	0//11/2011	2 P 1 1 7	MO	Warrenton	IMIN	R HI 009,	OREGON COAST	AT MP	8.05	TURN		02	028	DRI 2	2 011	011	0	UNN 1NN
00001	01/01/2012	ALL	SU	Warrenton	IMIN	R HI 009,	OREGON COAST	AT MP	8.05	TURN		02	004,028	DRI 2	2 091	011	0	
00000	02/20/2012	0 F 1 0 7	MO	Warrenton	MNT .	R HI 009,	OREGON COASI	AI MP	0.05	TURN		04	020	DDV 2	2 011	011	0.	ZIN IN ONN
00240	00/10/2012	10A	MO CU	Warrenton	MNT .	R HI 009,	OREGON COASI	AI MP	0.05	TURN		02	020	DRI 2	2 011	011	0.	2 IN IN 0 N N
00104	00/12/2012	LUA	5U 011	Warrenton	PHN MANT	л пі UU9,	OREGUN CUAST		0.00	TOKN		02	020		- UII	011	0	VIN IN VIN IN
00146	03/10/2013	0 F 7 D	טכ תים	Warrenton	PHN MANT	л пі UU9,	OREGUN CUAST	AT MP	0.00	TOKN		02	020		- UII	011	0	VIN IN VIN IN
00140	04/04/2014	/ E / D	гK mu	Warrenton	PHN MANT	л пі UU9,	OREGUN CUAST	AT MP	0.00	TOKN		02	004,020 043	NET 2	- UII	011	0	U IN IN 1 NI NI
00043	04/0//2011 02/10/2012	4£ 11⊼	TH	Warrenton	PHN MANT	л пі UU9,	OREGUN CUAST	AT MP	0.09	KEAK OTU	0.35	12	040	UKI 2	011	UTT	0	N N N
00007	02/10/2012	LTH EV	JA TIT	Warrenton	1411A MIPL	л пт 009,	OPECON COAST	איזיי ארא איזיי ארא	8 19	UIU EIV	035 062 010	±∠ 27	016 080 081	1 אינט 1			0	VI NI O
00301	00/20/2013	UA Q D	тU тп	Warrenton	1411A MIPL	л пт 009,	OPECON COAST	איזיי ארא איזיי ארא	0.40 8 50	C T T	035,002,010	∠ / 1 2	010,000,001	DEA J		011	0	עד אד ס זע דע כ
00347	00/12/2010	JE	C V T U	Warrenton	1411A MIPL	л пт 009,	OPECON COAST	איזיי ארא איזיי ארא	0.00	OTU	035	⊥∠ 12		URI 2	011	UTT	0	עד אד ⊃ עד אד 0
00422	00/00/2012	UNL	SА	warrenton	IMIN	м пт 009,	OKEGUN CUAST	nı MP	ンンン・ンツ	OIU	000	± 4		DUI 1	L UII		U	O IN IN

City of Warrenton

М				Т	
C L				0	PEOPLE
O G				Т	S
M				S	K P
РТ				U V VEI	HICLE I I A E
N Y	COLL			R E TYI	P/OWN L N L E
T P CRASH LOCATION	TYPE EVENT	CAUSE	ERROR	F H #1	#2 L J C D
MN R HY 009, OREGON COAST AT MP 999.99	REAR	27	016,026	DRY 2 011	1 011 0 0 N N
	M C L O G M P T N Y T P CRASH LOCATION MN R HY 009, OREGON COAST AT MP 999.99	M M C L O G M F P T N Y T P CRASH LOCATION COLL TYPE MN R HY 009, OREGON COAST AT MP 999.99 REAR	M M C L O G M F P T N Y T P CRASH LOCATION COLL TYPE EVENT CAUSE MN R HY 009, OREGON COAST AT MP 999.99	M C L O G M - P T N Y T P CRASH LOCATION COLL MN R HY 009, OREGON COAST AT MP 999.99 REAR 27 016,026	M T C L O G M T M T N Y M COLL T P CRASH LOCATION COLL R HY 009, OREGON COAST AT MP 999.99 REAR 27 016,026 DRY 2

City of Warrenton

				М								Г	1			
			С	L								C) -	PE(OPLE	2
			0	G								Т	•			S
	T		M	0								c -	-	v		D
	TD		D D	m								5 11 1			т	
	I D		P	T								0 1	VEHICI	15. I	1	A E
SERIAL	ΜA	*COUNTY OR	Ν	Y				COLL				RE	S TYP/OW	/N L	N	LΕ
NO DATE	ЕΥ	CITY NAME	Т	P CRASH !	LOCATION			TYPE	EVENT	CAUSE	ERROR	FΗ	1 #1 #	2 L	J	СD
00560 11/23/2013	100 97	Warrenton	MN	р цу 101	FORT STRUENS	איד או⊃ ∩	36	OTH	035	12		1 עפח	011			N N
00162 04/22/2012	120 011	Warronton	MNT	D UV 104,	FORT STEVENS	AT MD 0	50	DEVD	000	27	016		011 05	1 0	1 1	NT NT
00102 04/22/2012		Warrenten	MIN	К ПІ 104, р ну 104	FORI SIEVENS	AT ME U.	50	TLAN		27	010	DRI 2	011 03	1 0	/	IN IN
00558 11/22/2013	OA FR	Warrenton	MIN	R HI 104,	FORT STEVENS	AT MP U.	52	TURN	0.5.0	02	028	DRI 2		I U	/ _	IN IN
00324 07/23/2012	8A MO	Warrenton	MIN	R HY 104,	FORT STEVENS	AT MP U.	/4	FIX	059	08	002,080	DRI	1 041	0	0	N N
00431 09/19/2013	5P TH	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 0.	8 /	TURN		07,27	043,016	DRY 2	2 011 01	1 0	0	N N
00449 09/28/2012	7P FR	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 0.	93	FIX	053	33,01	051,047,080	DRY 1	011	C) 1	ΝΥ
00002 01/02/2013	8P WE	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 1.	02	FIX	035,060,058	10	080,081	DRY 1	011	C	0 (N N
00038 01/31/2012	2A TU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 1.	52	FIX	058	30	050,080,081	WET 1	011	С	0 (ΝΥ
00021 01/17/2014	11P FR	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 1.	53	FIX	079,121	01	047,080,081	WET 1	011	С	0 (ΥΥ
00306 07/14/2013	12A SU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 1.	54	FIX	093,062	27	016,080,083	DRY 1	011	С	0 (Y N
00246 06/05/2010	6P SA	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 1.	56	FIX	092,058	26,10	080,081	DRY 1	011	C	0 (N N
00459 10/02/2013	4P WE	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 1.	57	FIX	035,079	10	080,081	WET 1	011	C) 1	N N
00228 06/01/2010	9P TU	Warrenton	MN	R HY 104.	FORT STEVENS	AT MP 1.	58	FIX	079	22	017	WET 1	011	C	0 (N N
00538 12/03/2011	9P SA	Warrenton	MN	R HY 104.	FORT STEVENS	AT MP 1.	60	FTX	079	33	051.080.081	WET 1	011	C	0	ΥN
00275 07/10/2011	7P SII	Warrenton	MN	R HY 104.	FORT STEVENS	ат мр 1	69	FTX	079	01.08	007.047.016	IINK 1	011	ć	0	NY
00050 02/07/2012		Warrenton	MN	R HY 104	FORT STEVENS	ат мр 1	71	ОТН	035	12	00170117010	WET 1	011	c C		NN
00116 03/25/2010		Warronton	MNT	D UV 104,	FORT STEVENS		7 0	TUDN	000	0.2	004 029		011 01	1 0		NT NT
00110 05/25/2010		Warrenten	MIN	К ПІ 104, р ну 104	FORI SIEVENS	AI ME I.	/ U 0 0	OTT	0.2 5	12	004,020	DRI 2 DDV 1		T 0		IN IN
00511 12/16/2014	OD NO	Warrenton	MIN	R HI 104,	FORI SIEVENS	AI MP 1.	00	OIN	035	10		DRI 1	011	0		IN IN
00563 11/25/2013	SP MO	warrenton	MIN	R HI 104,	FORT STEVENS	AT MP I.	98	DTH	035	12	0.4.0	DRII		1 (1 0	IN IN
003/9 08/22/2010	6P SU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	23	REAR		07	043	DRY 2	2 011 01	1 0	1	N N
00083 02/26/2012	IIP SU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	37	OTH	035	12		WET 1	011	0	0 0	N N
00180 05/06/2012	10A SU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	42	REAR		07	026	DRY 2	2 011 01	1 0) 1	N N
00287 07/13/2010	5P TU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	58	REAR		07	043	DRY 2	2 011 01	1 C	0 (N N
00269 06/23/2014	6P MO	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	63	TURN		02	028	DRY 2	2 011 01	1 C) 1	N N
00445 09/25/2012	5A TU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	71	OTH	035	12		DRY 1	011	С	0 (N N
00199 05/13/2014	4P TU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	71	TURN		02	028	DRY 2	2 011 01	1 C	0 (N N
00126 03/28/2013	9A TH	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	83	HEAD	058	16,05	080	WET 2	2 011 04	1 C	0 (N N
00642 12/31/2014	3P WE	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	85	PED		02,19	029	DRY 1	011	C) 1	N N
00273 07/09/2011	12P SA	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 2.	87	REAR	079	07,27	043,016	DRY 2	2 011 01	1 (2	N N
00292 07/18/2011	1A MO	Warrenton	MN	R HY 104.	FORT STEVENS	AT MP 2.	91	FIX	053	33,10	051,016,081	DRY 1	011	C) 1	ΥN
00129 04/01/2010	6Р ТН	Warrenton	MN	R HY 104.	FORT STEVENS	AT MP 3.	12	REAR		07	043	WET 2	2 011 01	1 (0	ΝΝ
00021 01/17/2012	3P TU	Warrenton	MN	R HY 104.	FORT STEVENS	АТ МР 3.	13	ANGL		02	028	WET 2	019 01	1 0) 1	NN
00194 05/26/2011	4P TH	Warrenton	MN	R HY 104.	FORT STEVENS	AT MP 3	13	REAR		07.01	043.047	WET 2	011 01	1 0	1	NY
00151 04/05/2014	70 GN	Warrenton	MN	D UV 104,	FORT STEVENS	AT MD 3	17	DEVD		27	016 080	WET 1	011	C	′ <u>+</u> \ 1	NN
00092 03/11/2010	/I JA /D TU	Warronton	MNT	D UV 104,	FORT STEVENS		20	DEVD		07	013	עדביית כ	011 01	1 0	/ \ 1	IN IN
000082 03/11/2010		Warrenten	MIN	К ПІ 104, р ну 104	FORI SIEVENS	AT ME J.	20	DEND		22 01	043	DDV 2		1 0	, T	IN IN
00595 12/07/2014	IP SU	Warrenton	MIN	R HI 104,	FORI SIEVENS	AI MP 5.	20	REAR	044 050	22,01	017,047	DRI 2	2 011 01	1 0		IN I
00122 03/2//2013	6A WE	Warrenton	MIN	R HY 104,	FORT STEVENS	AT MP 3.	32	ANGL	044,058	02	028	WET 2		1 0	0	NN
00258 06/21/2013	IP FR	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	32	ANGL		02	028	DRY 2	2 011 01	1 0	0	N N
00241 06/03/2010	3P TH	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	35	ANGL	082	10	028	DRY 1	011	C) 1	N N
00477 10/24/2011	9P MO	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	35	TURN		02	027	DRY 1	011	C) 1	N N
00451 10/07/2011	4P FR	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	38	ANGL		02	028	WET 2	2 011 01	1 C	0 (N N
00103 03/16/2010	6P TU	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	42	TURN	082	02	028,022	DRY 2	2 011 01	1 C	2	N N
00596 12/06/2014	6P SA	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	44	ANGL		02	028	WET 2	2 011 01	1 C	0 (N N
00382 08/25/2012	9P SA	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	44	TURN		08	002,080	DRY 2	2 011 01	1 C	0 (N N
00560 12/10/2012	7A MO	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	44	TURN		02	028	DRY 2	2 011 01	1 () 1	N N
00460 09/15/2014	3P MO	Warrenton	MN	R HY 104,	FORT STEVENS	AT MP 3.	44	TURN		10	060	DRY 1	011	C) 1	Y N
00509 10/13/2014	7A MO	Warrenton	MN	R HY 104.	FORT STEVENS	AT MP 3.	44	TURN		02	028	DRY 2	2 011 01	1 (0 (N N
00204 05/13/2011	6P FR	Warrenton	MN	R HY 104.	FORT STEVENS	AT MP 3.	50	REAR	003,054	32,27	052,016,081	DRY 2	2 011 01	1 (0 (N N
00028 01/20/2014	4P MO	Warrenton	MN	R HY 104.	FORT STEVENS	AT MP 3	54	REAR	004	07	043	DRY 2	2 011 01	1 () 1	N N
00423 08/28/2014	7p TH	Warrenton	MN	R HY 104	FORT STEVENS	ат мр 3	84	TIRN		32.01	052.047	DRY	> 011 01	- 0 1 (1	NY
55125 00/20/2014	, ± ±11		T.TT.M			··· ··· J.	~ -	1 01/11		02,01	002,011	2111 2		- 0	· -	~* ±

City of Warrenton January 1, 2010 through December 31, 2014

						М											r	т			
					С	L											(0	E	'EOF	LE
					0	G											r	Г			S
		т			M												S			К	P
		I	D		Р	Т											Ū	V VEH	ICLE	Ι	IAE
SERIA	L	М	А	*COUNTY OR	N	Y							COLL				RI	E TYP	/OWN	L	NLE
NO	DATE	Е	Y	CITY NAME	Т	Ρ	CRASH	LOCAT	ION				TYPE	EVENT	CAUSE	ERROR	ΕI	H #1	#2	L	JСD
00548	11/06/2014	9A	ΤH	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 3.86		FIX	101	10	080,081	WET :	2 011	011	0	0 N N
00222	04/11/2014	2P	FR	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 3.88		FIX	064	10	016	DRY	1 053		0	0 N N
00291	07/12/2012	ЗP	ΤН	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 3.90		REAR	099	07	043	DRY .	2 011	011	0	1 N N
00246	06/13/2013	11A	ΤH	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 3.93		TURN		02,08	028,008	WET :	2 051	011	0	0 N N
00289	07/07/2014	ЗP	MO	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 4.00		BACK		10	011	DRY :	2 011	011	0	0 N N
00177	05/10/2011	1P	TU	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 4.04		FIX	058	16	016,080,081	DRY	1 011		0	0 N N
00475	09/23/2014	9P	TU	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 4.06		OTH	035	12		WET	1 013		0	0 N N
00098	03/03/2012	7P	SA	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 4.07		FIX	040,061,013	10	080,081	WET	3 011	011	0	0 N N
00380	08/23/2010	6P	MO	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 4.24		OTH	035	12		DRY	1 011		0	0 N N
00270	07/08/2011	4 P	FR	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 4.48		TURN		07	042	DRY 1	2 011	011	0	0 N N
00459	09/15/2014	12P	MO	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 4.68		PED		02	029	DRY	1 011		0	1 N N
00140	04/03/2012	ЗP	TU	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 999.9	99	REAR	013	07	043	DRY	3 011	011	0	0 N N
00630	12/26/2013	11P	ΤН	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 999.9	99	OTH	035	12		DRY	1 011		0	0 N N
00023	01/14/2011	9P	FR	Warrenton	MN	R	HY 104,	FORT	STEVEN	IS AT M	P 999.9	99	FIX	079	10	080,081	WET	1 011		0	1 Y N

City of Warrenton

					C O	M L G								ר כ ר)	F	EOPI	JE S
		Т	5		M	-								S		TOTE	K	P
CEDIAT		⊥ M	D	*COUNTY OD	P	T				COLT					VEH TVD	LCLE (OWN	I I T N	AE
NO	DATE	Ē	A Y	CITY NAME	T I	P CRASH	LOCATION			TYPE	EVENT	CAUSE	ERROR	F H	[#1	#2	LJ	
00225	05/27/2010	2P	ΤH	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.00		REAR		07	026	DRY 2	011	051	0 1	. N N
00025	01/20/2013	9A	SU	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.05		TURN		02	028	ICE 2	011	011	0 1	. N N
00006	01/06/2014	6P	MO	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.17		OTH	035	12		WET 1	. 011		0 0) N N
00602	12/23/2010	8A	TH	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.26		REAR		07	043	WET 2	011	011	0 1	. N N
00266	06/22/2014	6P	SU	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.35		FIX	022,023	10	017	DRY 2	011	011	0 1	. N N
00435	09/29/2011	12P	TH	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.38		REAR		07,22	043	DRY 2	011	011	0 2	N N
00251	06/17/2013	6P	MO	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.38		REAR		07,27	043,016	WET 2	011	011	0 2	N N
00643	10/09/2013	3P OD	WE	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.39		REAR	0.05	07	043	DRY 2	: 011	011	0 0	
00456	09/13/2014	9P 77	SA	Warrenton	MIN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.40		DEAD	035	12	0.4.2	DRY	. 011	011	0 0	IN N
00433	09/29/2011	7 A 2 D	TH	Warrenton	MIN MIN	R HI 105,	WARRENTON-ASTORIA	AT MP 0.43		REAR	0.05	07	043	DRI 2	111	011		IN IN
00032	02/10/2010	2 P 1 D	까끄	Warrenton	MNT	R HI 103,	WARRENION-ASIORIA	AI MP 0.45		TIDN	110	10	062	WEI 1 DDV 1	011		0 0	N IN IN
000000	10/24/2012	1 F 0 7	TU TU	Warrenten	MNT	R HI 105,	WARRENION-ASIORIA	AT MF 0.50		TOUN	110	20	0.02		011	011	0 1	N N
00327	05/22/2014	11 A	C L C II	Warrenton	MN	R HI 105, P HV 105	WARRENTON-ASIORIA	AT MP 0.50		DEVD	034	29	026	NEI 2	011	011	0 1	N N
00100	09/22/2011	97	FR	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.03		OTH	035	12	020	DRY 1	011	011	0 0) N N
00103	03/07/2012	52	FR	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0.69		FTX	092 079 091	26	080 081	WET 1	011) N N
00142	04/06/2012	12P	FR	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 0 74		REAR	013.092	20	016	DRY 4	011	011	0 4	INN
00142	08/24/2011	12P	WE	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 1 00		BACK	010,002	02	011.028	DRY 2	051	073	0 0) N N
00592	12/05/2014	5P	FR	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.16		TURN		02	028	WET 2	011	011	0 0) N N
00618	12/18/2014	1 P	тн	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.17		TURN		02	028	WET 2	011	011	0 1	NN
00250	06/22/2012	2 P	FR	Warrenton	MN	R HY 105.	WARRENTON-ASTORIA	AT MP 1.22		TURN	003	02	028.016	WET 2	011	011	0 0) N N
00048	02/05/2010	10A	FR	Warrenton	MN	R HY 105.	WARRENTON-ASTORIA	AT MP 1.22		TURN	000	02	028	DRY 2	011	011	0 1	NN
00374	08/31/2011	1 P	WE	Warrenton	MN	R HY 105.	WARRENTON-ASTORIA	AT MP 1.27		FTX	040.058	10	080,081	DRY 1	011		0 0) N N
00587	12/02/2014	5A	TU	Warrenton	MN	R HY 105.	WARRENTON-ASTORIA	AT MP 1.27		FIX	124,079	01	047,080,081	ICE 1	011		0 1	NY
00357	08/05/2010	11A	TH	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.31		OTH	035	12	, ,	DRY 1	011		0 0) N N
00392	08/19/2014	11A	TU	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.37		TURN		02	028	DRY 2	014	011	0 0) N N
00489	11/02/2011	7P	WE	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.47		FIX	100	10	011,080	WET 1	041		0 0) N N
00047	01/30/2013	2P	WE	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.61		FIX	079,010	27	016,080,081	WET 1	041		0 1	N N
00417	09/09/2010	ЗP	ΤH	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.64		TURN		08	002	DRY 2	011	011	0 0) N N
00582	12/06/2010	5P	MO	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 999.99)	OTH	035	12		WET 1	011		0 1	N N
00526	11/08/2013	12P	FR	Warrenton	MN	R HY 105,	WARRENTON-ASTORIA	AT MP 999.99)	FIX	035,062	10	080	WET 1	011		0 0) N N
00082	02/26/2012	6P	SU	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.11		TURN	079,088	08	004	WET 2	011	011	0 0) N N
00336	08/03/2012	1P	FR	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.11		TURN		08,27	002,016,080	DRY 2	011	011	0 2	'N N
00427	09/26/2011	9P	MO	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.11		FIX	072	08,27	001,016	WET 1	011		0 0) N N
00259	06/19/2014	2A	ΤH	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.12		OTH	035	12		DRY 1	011		0 0) N N
00545	12/09/2011	5P	FR	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.15		REAR		07	043	DRY 2	011	011	0 0) N N
00606	12/11/2013	4P	WE	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.26		ANGL		02	028	WET 2	011	011	0 0) N N
00316	06/24/2014	1P	ΤU	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.26		ANGL		02	028	DRY 2	011	011	0 1	. N N
00308	07/19/2012	2 P	ΤH	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.26		TURN	082	08,02	004,028	DRY 2	011	011	0 C) N N
00078	03/08/2010	5P	MO	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.27		ANGL		02	028	DRY 2	011	011	0 1	. N N
00412	09/07/2010	ЗP	ΤU	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.27		ANGL		02	028	DRY 2	091	011	0 2	N N
00427	09/16/2010	11A	ΤH	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.27		ANGL		02	028	WET 2	011	011	0 2	'N N
00537	10/29/2014	12P	WΕ	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.27		ANGL	086	02	028	DRY 2	011	011	0 2	'N N
00625	12/23/2014	4 P	ΤU	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.27		ANGL		02	028	WET 2	011	011	0 0) N N
00016	01/07/2010	10A	ΤH	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.27		TURN		02	028	DRY 2	011	011	0 0) N N
00134	04/02/2012	3P	MO	Warrenton	CN	R HY 105,	WARRENTON-ASTORIA	AT MP 1.27		TURN	082	02	028	DRY 2	011	011	0 0	IN N
00585	12/20/2012	ЗP	TH	Warrenton	CN	к ну 105,	WARRENTON-ASTORIA	AT MP 1.27		TURN		02	028	WET 2	: 011	011	U 0	IN N
00488	11/01/2011	2P	TU	Warrenton	CN	к нү 105,	WARRENTON-ASTORIA	AT MP 1.33		REAR		TÜ	UII	DRY 2	011	011	0 0	INN
00000	11/20/2013	17	.T.A	warrenton	CN	к ні 105,	WARKENTON-ASTORIA	AT MP 1.33		TURN		02	007	DRY 2		011	0 0	IN N
00022	UI/I/2012	ΤĽ	.T.U	warrenton	CN	к нт 105,	WARKENTON-ASTORIA	AT MP 1.34		KEAK		U /	U∠6	WET 2	. UII	UTT	0 0	IN N

City of Warrenton

						М						-	Г			
					С	L						()	F	EOP	LE
					0	G						5	Г			S
		Т			М							S			K	P
		I	D		P	Т						V U	/ VEH	ICLE	I J	ΙΑΕ
SERIAI		М	А	*COUNTY OR	N	Y		COLI				RI	E TYP	/OWN	ΓL	J L E
NO	DATE	Ε	Y	CITY NAME	Т	P CRASH	LOCATION	TYPE	EVENT	CAUSE	ERROR	FΗ	1 #1	#2	LJ	JСD
00133	02/06/2012	11A	MO	Warrenton	CN	R HY 105	, WARRENTON-ASTORIA AT MP 1.3	34 REAR		07	043	DRY 2	2 011	011	0 /	0 N N
00145	04/04/2014	5P	FR	Warrenton	CN	R HY 105	, WARRENTON-ASTORIA AT MP 1.5	55 TURN	124	01,08	047,001,080	WET 2	2 011	011	0 .	1 N Y
00332	08/12/2011	бP	FR	Warrenton	CN	R HY 105	, WARRENTON-ASTORIA AT MP 1.5	57 FIX	058,079,086	10	080,081	DRY 1	1 011		0 .	1 N N
00460	10/14/2011	11P	FR	Warrenton	CN	R HY 105	, WARRENTON-ASTORIA AT MP 1.7	71 ОТН	035	12		DRY :	1 011		0 (0 N N
00390	09/07/2011	4P	WE	Warrenton	CN	R HY 105	, WARRENTON-ASTORIA AT MP 1.8	31 TURN		02,27	028,016,004	DRY 2	2 011	011	0 (0 N N
City	of	Warren	ton													
------	----	--------	-----	--												

January 1, 2010 through December 31, 2014

						М						Т	I			
					С	L						С	i i	P	EOP	ĹΕ
					0	G						Т				S
		Т			М							S			K	P
		I	D		P	Т						υv	VEH1	ICLE	I I	ΑE
SERIA	L	М	A	*COUNTY OR	N	Y		COLL				RΕ	TYP/	/OWN	L N	J L E
NO	DATE	Ε	Y	CITY NAME	Т	P CRASH	LOCATION	TYPE	EVENT	CAUSE	ERROR	FΗ	#1	#2	ЪĴ	I C D
00316	07/14/2010	10P	WE	Warrenton	MN	R HY 485	, FORT STEVENS SPUR AT MP 4.83	SS-0		32,35,06	052,034,038	DRY 2	011	011	0 () N N

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CITY STREET LOCATIONS BY COUNTY - DRIVER BEHAVIOR FORMAT

City of Warrenton January 1, 2010 through December 31, 2014

											Т		PEO	PLE	2
CLATSO	OP COUNTY										0				S
										S	Т		Κ		Ρ
										U	V VE	HICLE	Ε	IZ	ΑE
SERIAL				*COUNTY OR		COL	_			R	E TY	P/OWN	L	N 1	LΕ
NO	DATE	TIME I	DAY	CITY NAME	CRASH LOCATION	TYPI	E EVENT	CAUSE	ERROR	F	н #1	#2	L	J	СD
00555	12/07/2012	1 7	FD	Warrenton		FTV	088 100	1.0	080 081	WET	1 01	1	0	0.	V N
000000	12/07/2012 02/10/2014	30	MO	Warrenton	SE 11TH SI 150 FI W OF SE ANCHOR AVE	FIX	073 062	10	080,001	MET	1 01	1	0	0 1	N N
00075	02/10/2014	8D	9D	Warrenton	NW 13TH ST 320 FT W OF WARRENTON DR	FIX	079 010	10	080,003,001	WET	1 01	1	0	0 1	N N
00110	02/10/2011	30	MO	Warrenton	SE SE 13TH ST 175 FT SE OF FT STEVENS HY SPUR	FIX	073 062 010	01	047 080	WET	1 01	1	0	0 1	NV
00074	01/31/2013	112	тн	Warrenton	NE 1ST ST 20 FT E OF NE HERON AVE	PAR	075,002,010	10	011	DRA	2 01	3 011	0	0 1	NN
00216	05/27/2014	5P	TT	Warrenton	NE 1ST ST 120 FT NW OF NE SKIPANON DR	FTX	053	32	052.080.081	DRY	1 01	1	0	0 1	NN
00067	02/15/2013	7A	FR	Warrenton	SW 2ND ST UNK FT UN OF	REAR	2 0 9 2	07	026	DRY	2 01	1 011	0	0 1	N N
90030	01/20/2014	3P	MO	Warrenton	SW 2ND ST 40 FT NW OF S MAIN AVE	FIX	064.089	10	017	DRY	1 0.5	1	0	0 1	N N
00224	05/24/2010	4 P	MO	Warrenton	SW 2ND ST 100 FT NW OF S MAIN AVE	ANGI	···, ···	02	028	DRY	2 01	1 011	0	0 1	N N
00104	03/06/2012	4 P	TU	Warrenton	SW 3RD ST 100 FT NW OF ALDER AVE	PAR	ζ	02	028	DRY	2 01	1 011	0	0 1	N N
00135	04/01/2011	9P	FR	Warrenton	NE 5TH ST 600 FT NW OF NE SKIPANON DR	FIX	034,079,088	10	080,081	WET	1 01	1	0	0 1	N N
00357	07/23/2014	2 P	WE	Warrenton	NW 7TH ST 100 FT E OF WARRENTON DR	FIX	052	10	080	DRY	1 01	1	0	0 1	N N
00603	12/24/2010	8P	FR	Warrenton	SW 9TH ST 600 FT SE OF RIDGE RD	FIX	092,062	26,27	016,080,081	WET	1 01	1	0	1 1	N N
00443	09/23/2012	9A	SU	Warrenton	SW ALDER AVE 100 FT SW OF N MAIN AVE	REAF	. 092,099	07	043	DRY	2 01	1 011	0	0 1	N N
00170	04/22/2014	1P	TU	Warrenton	SW ALDER AVE AT SW 1ST ST	ANGI		02	028	DRY	2 01	1 011	0	1 1	N N
00181	05/01/2014	7A	ΤН	Warrenton	SW ALDER AVE AT SW 1ST ST	ANGI	110	03	021	DRY	1 01	1	0	1 1	N N
00228	05/31/2013	ЗP	FR	Warrenton	SW ALDER AVE AT SW 2ND ST	READ	R	07	043	DRY	2 01	1 011	0	0 1	N N
00030	01/20/2014	3P 1	MO	Warrenton	SW ALDER AVE UNK FT NE OF SW 2ND ST	FIX	064,089	10	017	DRY	1 05	1	0	0 1	N N
00211	05/22/2013	3P	WE	Warrenton	SW ALDER CT AT SW 1ST ST	FIX	088	32	052,001,080	WET	1 01	1	0	0 1	N N
00552	12/06/2012	10A	ΤН	Warrenton	SE ANCHOR AVE 250 FT N OF SE 10TH PL	BACH	ζ.	02	028	WET	2 01	1 011	0	0 1	N N
00156	04/19/2012	2 P	ΤН	Warrenton	SE ANCHOR AVE AT SE 1ST ST	ANGI		02	028	WET	2 01	1 011	0	0 1	N N
00404	09/12/2011	11P 1	MO	Warrenton	se anchor ave at se 3rd st	FIX	088,062,093	27	016,080,081	DRY	1 01	1	0	0 1	N N
00517	11/11/2012	8 P	SU	Warrenton	SW BIRCH AVE 150 FT NE OF SW 2ND ST	FIX	070	10	011,080	WET	2 01	1 991	0	0 1	N N
00057	02/12/2011	1P	SA	Warrenton	SW BIRCH AVE 100 FT SW OF W HARBOR ST	TURI	1	10	080	DRY	2 01	1 011	0	0 1	N N
00131	03/29/2012	7P	ΤН	Warrenton	BURMA RD 700 FT N OF PETER IREDALE RD	FIX	076	01	047	WET	1 01	1	0	0 1	ΝΥ
00210	05/22/2013	6P	WE	Warrenton	SW CEDAR AVE AT SW 2ND ST	ANGI		03	021	WET	2 01	1 011	0	1 1	N N
00311	05/19/2014	2P 1	MO	Warrenton	SW CEDAR AVE 200 FT NW OF SW 2ND ST	FIX	064	10	082	DRY	1 05	3	0	0 1	N N
00601	12/10/2014	7A	WE	Warrenton	SW CEDAR AVE 250 FT N OF SW 9TH ST	REAP	R 013	07	043	WET	4 07	3 011	0	3 1	N N
00140	03/30/2014	8 P	SU	Warrenton	DELAURA BEACH LN AT RIDGE RD	TURN	1	02	028	DRY	2 01	1 011	0	2 1	N N
00547	12/03/2012	8P .	MO	Warrenton	delaura beach ln 950 ft e of ridge rd	FIX	092,079,010	10	080,081	WET	1 01	1	0	1 1	N N
00598	12/07/2013	6A	SA	Warrenton	delaura beach ln 545 ft sw of whiskey rd	FIX	124,088	01	047,080	ICE	1 01	1	0	0 1	ΝΥ
00315	07/31/2011	10A	SU	Warrenton	DISCOVERY LN AT ENSIGN AVE	BACH	ζ.	10	011	DRY	2 11	1 011	0	0 1	N N
00323	07/22/2013	2P 1	MO	Warrenton	DISCOVERY LN AT ENSIGN AVE	REAF	R	07	026	DRY	2 01	1 011	0	0 1	N N
00417	09/09/2013	6P 1	MO	Warrenton	DISCOVERY LN AT ENSIGN AVE	TURI	1	02	028	DRY	2 01	1 011	0	2 1	N N
00395	08/27/2013	7A	TU	Warrenton	DISCOVERY LN AT ENSIGN AVE	FIX	044,058,025	32,16	052,016,080	WET	1 01	1	0	0 1	N N
00320	07/24/2014	4 P	ΤH	Warrenton	DISCOVERY LN 500 FT N OF ENSIGN AVE	FIX	040	27	016,080,081	UNK	1 01	1	0	0 1	N N
00059	02/06/2014	4 P	ΤН	Warrenton	ENSIGN AVE AT NW 19TH ST	REAP	R 124	01	047	ICE	2 07	1 011	0	0 1	ΝΥ
00500	11/07/2011	6P .	MO	Warrenton	ensign ave unk ft un of nw 19th st	FIX	057 , 100	22	017,080,081	WET	1 01	1	0	0 1	N N
00271	06/26/2014	11A	ΤН	Warrenton	ENSIGN AVE AT OREGON COAST HY	REAF	{	29	026	DRY	2 01	1 011	0	1 1	N N
00479	10/29/2010	7A	FR	Warrenton	ENSIGN AVE 0 FT NW OF OREGON COAST HY	FIX	044,058	10	080	WET	1 01	1	0	1 1	N N
00044	02/03/2012	10A	FR	Warrenton	ENSIGN AVE 200 FT SE OF OREGON COAST HY	SS-C)	13	045,010	DRY	2 01	1 011	0	0 1	N N
00114	03/13/2012	2P	TU	Warrenton	ENSIGN AVE 200 FT NW OF OREGON COAST HY	TURN	1	02	028	WET	2 01		0	1 1	N N
00429	09/1//2013	12P	TU	Warrenton	ENSIGN AVE 450 FT NW OF OREGON COAST HY	TURI		02	028	DRY	2 01		0	0 1	NN
00455	10/08/2011	UNK	SA	Warrenton	JETTY ST 100 FT N OF 5TH AVE	ANGI	. 092	26	080,081	UNK	2 01	1 041	0	0 1	N N
00311	0//1//2013	6P 75	WE	warrenton	JUNIPER AVE JUU FT S OF SW ZND ST	FIX	U61	10 10	016,080,081	DRY	1 01	1	U	T I	N N
00375	08/13/2010	/P	F.K	warrenton	NE KING AVE 1431 FT N OF E HARBOR ST	FIX	035,079	12	016 044	DRY	1 01	1	U	0 1	N N
00410	09/07/2012	1 CD	ľK mu	warrenton	LAKE DR UNK FT UN OF /TH AVE	FIX	0/9	2/,U5	017,000,001	DRY	1 01	1	U	T I	N N
00087	02/24/2011	TOP	T.H	warrenton	LAKE DR 50 FT S OF 9TH AVE	FIX	124,100	U L	04/,080,081	LCE	1 01	L 1 011	U	0 1	NY
00516	10/1//2014	6P	ľK mu	warrenton	NEPTUNE DR 625 FT S OF E HARBOR ST ALT	TURI	1	02	028	WE'I'	2 01		U	0	N N
00463	10/09/2012	22	.T.O	warrenton	NEPTUNE DR 200 FT NW OF OREGON COAST HY	READ	<	2/	010	DRY	2 01		U	T I	N N
00286	07/12/2010	TZB 1	ΜΟ	warrenton	NEPTUNE DR ZUU FT NW OF OREGON COAST HY	TURI	1	U /	026	DRY	2 01	T NTT	U	21	ΝN

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CITY STREET LOCATIONS BY COUNTY - DRIVER BEHAVIOR FORMAT

City of Warrenton January 1, 2010 through December 31, 2014

Т PEOPLE CLATSOP COUNTY 0 S Sт K Ρ U V VEHICLE [I A E SERIAL COLL *COUNTY OR R E TYP/OWN L N L E NO DATE TIME DAY CITY NAME CRASH LOCATION TYPE EVENT CAUSE ERROR F H #1 #2 L J C D TURN TURN ANGL TURN 00194 05/15/2012 2P TU Warrenton NEPTUNE DR 300 FT NW OF OREGON COAST HY 02 028 DRY 2 011 011 0 0 N N 00465 09/19/2014 6P FR Warrenton NEPTUNE DR 325 FT W OF OREGON COAST HY 02 028 DRY 2 011 011 0 0 N N 011 2 02 <td 02 WET 2 011 011 0 0 N N DRY 2 011 011 0 1 N N WET 2 011 011 0 0 N N 0 0 N N 02NN JULY 14/2012 2P SA Warrenton PETER IREDALE RD AT RIDGE RD ANGL 0.0 0.0 0.01,080,081 DRY 1 0.01 00331 08/04/2012 9A SA Warrenton PETER IREDALE RD AT RIDGE RD ANGL 0.2 0.28 DRY 2 0.11 00330 08/04/2012 9A SA Warrenton PETER IREDALE RD AT RIDGE RD ANGL 0.2 0.28 DRY 2 0.11 00320 08/18/2014 3P MO Warrenton PETER IREDALE RD AT RIDGE RD ANGL 0.2 0.28 DRY 2 0.11 00225 06/11/2011 9P SA Warrenton PETER IREDALE RD AT RIDGE RD TURN 0.3,02 021,028 DRY 2 0.11 00255 06/20/2013 10A TH Warrenton PETER IREDALE RD AT RIDGE RD FIX 040,062,058 27 0.16 WET 1 0.11 00405 10/2/2013 5P WE Warrenton RIDGE RD 575 FT N OF PETER IREDALE RD 0 0 N Y DRY 1 011 0 1 N N DRY 2 011 011 0 1 N N DRY 2 011 011 0 2 N N DRY 2 011 011 0 1 N Y DRY 2 011 011 0 3 N N 0 0 N N 0 0 N N 0 0 N N 0 0 N N 0 1 N Y DRY 2 011 011 0 0 N N 0 0 N N 0 0 N Y DRY 1 011 0 0 N N DRY 1 011 0 1 N N

VEHICLE OWNERSHIP CODES

Code	Short Description	Long Description
1	PRVTE	Private
2	GOVMT	Government
3	PUBLC	Public
4	RENTL	Rental vehicle
5	STOLN	Stolen vehicle
9	UNKN	Unknown ownership

VEHICLE TYPE CODES

Code	Short Description	Long Description	
01	PSNGR CAR	Passenger car, pickup, light delivery, etc.	
02	BOBTAIL	Truck tractor with no trailers (bobtail)	
03	FARM TRCTR	Farm tractor or self-propelled farm equipment	
04	SEMI TOW	Truck Tractor with trailer/mobile home in tow	
05	TRUCK	Truck with non-detachable bed, panel, etc.	
06	MOPED	Moped, minibike, seated motor scooter, motor bike	
07	SCHL BUS	School bus (includes van)	
08	OTH BUS	Other bus	
09	MTRCYCLE	Motorcycle, dirt bike	
10	OTHER	Other: forklift, backhoe, etc.	
11	MOTRHOME	Motorhome	
12	TROLLEY	Motorized Street Car/Trolley (no rails/wires)	
13	ATV	ATV	
14	MTRSCTR	Motorized scooter (standing)	
15	SNOWMOBILE	Snowmobile	
99	UNKNOWN	Unknown vehicle type	

CAUSE CODES

Code	Short Description	Medium Description	Long Description
00	NO CODE	NO CODE APPLICABLE	No cause associated at this level
01	TOO-FAST	TOO FAST FOR COND	Too fast for conditions (not exceed posted speed)
02	NO-YIELD	FAILED YIELD ROW	Did not yield right-of-way
03	PAS-STOP	PASSED STOP SIGN	Passed stop sign or red flasher
04	DIS SIG	DISREGRD TRAF SIGNAL	Disregarded traffic signal
05	LEFT-CTR	LEFT OF CTR/STRADDLE	Drove left of center on two-way road; straddling
06	IMP-OVER	IMPROPER PASSING	Improper overtaking
07	TOO-CLOS	FOLLOW TOO CLOSE	Followed too closely
08	IMP-TURN	IMPROPER TURN	Made improper turn
09	DRINKING	ALC OR DRUGS	Alcohol or Drug Involved
10	OTHR-IMP	OTHER DRIVE ERR	Other improper driving
11	MECH-DEF	MECH DEFECT	Mechanical defect
12	OTHER	OTHER	Other (not improper driving)
13	IMP LN C	IMP LANE CHANGE	Improper change of traffic lanes
14	DIS TCD	DISRG OTHR TCD	Disregarded other traffic control device
15	WRNG WAY	WRONG WAY / 1-WAY RD	Wrong way on one-way road; wrong side divided road
16	FATIGUE	DRIVER FATIGUED	Driver drowsy/fatigued/sleepy
17	ILLNESS	PHYSICAL ILLNESS	Physical illness
18	IN RDWY	ILLEGALLY IN RDWY	Non-motorist illegally in roadway
19	NT VISBL	NOT VISIBLE	Not motorist not visible; non-reflective clothing
20	IMP PKNG	IMPROPER PARKING	Vehicle improperly parked
21	DEF STER	DEFECTIVE STEERING	Defective steering mechanism
22	DEF BRKE	DEFECTIVE BRAKES	Inadequate or no brakes
24	LOADSHFT	LOAD SHIFTED	Vehicle lost load or load shifted
25	TIREFAIL	TIRE FAILURE	Tire Failure
26	PHANTOM	PHANTOM VEHICLE	Phantom / Non-contact Vehicle
27	INATTENT	INATTENTION	Inattention
28	NM INATT	NON-MTRST INATTENT	Non-Motorist Inattention
29	F AVOID	FAIL AVOID VEH AHEAD	Failed to avoid vehicle ahead
30	SPEED	EXCED POSTED SPEED	Driving in excess of posted speed
31	RACING	SPEED RACING	Speed Racing (per PAR)
32	CARELESS	CARELESS DRIVING	Careless Driving (per PAR)
33	RECKLESS	RECKLESS DRIVING	Reckless Driving (per PAR)
34	AGGRESV	AGGRESSIVE DRIVING	Aggressive Driving (per PAR)
35	RD RAGE	ROAD RAGE	Road Rage (per PAR)
40	VIEW OBS	VIEW OBSCURED	View obscured
50	USED MDN	IMP USE MEDIAN/SHLDR	Improper use of median or shoulder

ERR CODES

Code	Short Description	Medium Description	Long Description
000	NONE	NO ERROR	No error
001	WIDE TRN	WIDE TURN	Wide turn
002	CUT CORN	CUT CORNER	Cut corner on turn
003	FAIL TRN	F OBEY TRN	Failed to obey mandatory traffic turn signal, sign or lane markings
004	L IN TRF	LTRN FNT TRAF	Left turn in front of oncoming traffic
005	L PROHIB	LTRN PROHIB	Left turn where prohibited
006	FRM WRNG	T FRM WRNG LN	Turned from wrong lane
007	TO WRONG	T TO WRONG LN	Turned into wrong lane
008	ILLEG U	ILLEG U-TURN	U-turned illegally
009	IMP STOP	IMP STOP	Improperly stopped in traffic lane
010	IMP SIG	IMP/FAIL SIG	Improper signal or failure to signal
011	IMP BACK	IMP BACKING	Backing improperly (not parking)
012	IMP PARK	IMP PARKED	Improperly parked
013	UNPARK	IMP STRT PARK	Improper start leaving parked position
014	IMP STRT	IMP STRT STOP	Improper start from stopped position
015	IMP LGHT	IMP/NO LIGHTS	Improper or no lights (vehicle in traffic)
016	INATTENT	INATTENTION	Inattention (Failure to Dim Lights prior to 4/1/97)
017	UNSF VEH	DR UNSAFE VEH	Driving unsafe vehicle (no other error apparent)
018	OTH PARK	PRK MAN N/CLR	Entering/exiting parked position w/ insufficient clearance; other improper parking maneuver
019	DIS DRIV	DISRG DR SIG	Disregarded other driver's signal
020	DIS SGNL	DISRG TRF SIG	Disregarded traffic signal
021	RAN STOP	DISRG STP SGN	Disregarded stop sign or flashing red
022	DIS SIGN	DISRG WRN SGN	Disregarded warning sign, flares or flashing amber
023	DIS OFCR	DISRG POL/FLG	Disregarded police officer or flagman
024	DIS EMER	DISRG SIR/EMR	Disregarded siren or warning of emergency vehicle
025	DIS RR	DISRG RR SIG	Disregarded RR signal, RR sign, or RR flagman
026	REAR-END	F AVOID STP V	Failed to avoid stopped or parked vehicle ahead other than school bus
027	BIKE ROW	F/YLD ROW BIK	Did not have right-of-way over pedalcyclist
028	NO ROW	NO R-O-W	Did not have right-of-way
029	PED ROW	F/YLD ROW PED	Failed to yield right-of-way to pedestrian
030	PAS CURV	PASS ON CURVE	Passing on a curve
031	PAS WRNG	PASS WRNG SID	Passing on the wrong side
032	PAS TANG	PASS TANGENT	Passing on straight road under unsafe conditions
033	PAS X-WK	PASS STP4PED	Passed vehicle stopped at crosswalk for pedestrian
034	PAS INTR	PASS AT INTER	Passing at intersection
035	PAS HILL	PASS ON HILL	Passing on crest of hill
036	N/PAS ZN	PASS N/PASSNG	Passing in "No Passing" zone
037	PAS TRAF	PASS ONC TRAF	Passing in front of oncoming traffic
038	CUT-IN	CUTTING IN	Cutting in (two lanes - two way only)
039	WRNGSIDE	DR WRONG SIDE	Driving on wrong side of the road (2-way undivided roadways)
040	THRU MED	DR THRU MEDN	Driving through safety zone or over island
041	F/ST BUS	F/STP SCHLBUS	Failed to stop for school bus
042	F/SLO MV	F/SLO SLO VEH	Failed to decrease speed for slower moving vehicle
043	TOO CLOSE	FOLLW TO CLOS	Following too closely (must be on officer's report)
044	STRDL LN	STRD/DR WRNG	Straddling or driving on wrong lanes
045	IMP CHG	IMP LANE CHG	Improper change of traffic lanes

ERR CODES

Code	Short Description	Medium Description	Long Description
046	WRNG WAY	WRNG WY/1 WAY	Wrong way on one-way roadway: wrong side divided road
047	BASCRULE	V BASIC RULE	Driving too fast for conditions (not exceeding posted speed)
048	OPN DOOR	OPN DOOR TRAF	Opened door into adiacent traffic lane
049	IMPEDING	IMPEDING TRAF	Impeding Traffic
050	SPEED	SPEED	Driving in excess of posted speed
051	RECKLESS	RECKLSS DRVNG	Reckless driving (per PAR)
052	CARELESS	CARELSS DRVNG	Careless driving (per PAR)
053	RACING	RACING	Speed Racing (per PAR)
054	X N/SGNL	X-INT NO SGNL	Crossing at intersection, no traffic signal present
055	X W/SGNL	X-INT W/ SGNL	Crossing at intersection, traffic signal present
056	DIAGONAL	X-INT DIAGNL	Crossing at intersection - diagonally
057	BTWN INT	X-BTWN INTER	Crossing between intersections
059	W/TRAF-S	W SHLD W/TRAF	Walking, running, riding, etc., on shoulder WITH traffic
060	A/TRAF-S	W SHLD A/TRAF	Walking, running, riding, etc., on shoulder FACING traffic
061	W/TRAF-P	W PAVE W/TRAF	Walking, running, riding, etc., on pavement WITH traffic
062	A/TRAF-P	W PAVE A/TRAF	Walking, running, riding, etc., on pavement FACING traffic
063	PLAYINRD	PLAY IN RDWY	Playing in street or road
064	PUSH MV	PUSH MV IN RD	Pushing or working on vehicle in road or on shoulder
065	WORK IN RD	WORK IN RD	Working in roadway or along shoulder
070	LAY ON RD	LYING IN RD	Standing or lying in roadway
071	NM IMP USE	N-M IMP USE	Improper use of traffic lane by non-motorist
073	ELUDING	ELUDING	Eluding / Attempt to elude
079	F NEG CURV	FAIL NEG CURV	Failed to negotiate a curve
080	FAIL LN	F MAINT LANE	Failed to maintain lane
081	OFF RD	RAN OFF RD	Ran off road
082	NO CLEAR	MISJUDGE CLR	Driver misjudged clearance
083	OVRSTEER	OVERSTEER	Over-correcting
084	NOT USED	NOT USED	Code not in use
085	OVRLOAD	OVERLOAD	Overloading or improper loading of vehicle with cargo or passengers
097	UNA DIS TC	UNA DISRG TCD	Unable to determine which driver disregarded traffic control device

OIT FEL/JUMP FEL/JUMPE V Occupant fell, jumped or was ejected from moving vehicle 021 INTERFER PSNGR INTERFERED Passenger interfered with driver 033 BUG INTF ANNL INTERFERED Animal or insect in vehicle interfered with driver 034 INDRCT PED SUBSEQUENT PED "Sub-Ped": pedesizina injured subsequent to collision, etc. 035 SUB-PED SUBSEQUENT PED "Sub-Ped": pedesizina injured subsequent to collision, etc. 036 INDRCT BIK BIKE INDRCTLY INVLV Pedalcyclist indirectly involved (not struck) 037 HITCHIKR HITCHIKR Hitchikr (soliciting a ride) 048 PSNGR TOW PSNGR TOWED Passenger or non-motorist being towed or pushed on conveyance 039 ON/OFF V ON/OFF STOP VEH Getting onioff stopped/parked vehicle (occupants only; must have physical contact w/ vehicle) 011 MV PUSHD VEH TOWED/TOWING Vehicle boring or had been towing another vehicle 012 MV TOWED VEH TOWED/TOWING Vehicle boring rub-rdway (not Light Rail) 014 SET MOTN MV SET IN MOTION Vehicle struck train 015	Code	Short Description	Medium Description	Long Description
International Constraints PELUSUMP Perspective Perspective 001 INTERRP PSINGR INTERRERD Passenger interfered with driver 003 BUG INTF ANML INTERFERED Animal or insect in vehicle interfered with driver 004 INDRCT PED PED INDRCTLY INVLV Pedestrain indirectly involved (not struck) 005 SUB-PED SUBSEQUENT PED "Sub-Ped": pedestrain injured subsequent to collision, etc. 006 INDRCT PED BUS INDRCTLY INVLV Pedestrain injured subsequent to collision, etc. 007 HITCHIKR HITCHHIKER Hitchhiker (soliciting a ride) 008 PSNGR TOW PSNGR TOWED Passenger or non-motorist being towed or pushed on conveyance 0010 SUBSEQ OVERTURN Overturned after first harmful event Vehicle interfore with driver (child released brakes, etc.) 011 MV PUSHD VEH BEING PUSHED Vehicle is droud or habeen towing another vehicle 012 MV TOWED VEH TOMED/TOWING Vehicle struck yr (not Light Rail) 013 FORCED BY IMPACT Vehicle struck yr (not Light Rail) 014 SET MOTN MV SET IN MOTION Vehicle struck yr (no	004			
Interfer Pristic NTF Pristic NTF 004 INDRCT PED PED INDRCTLY INVLV Pedatyria indirectly involved (not struck) 005 SUB.FED SUBSEQUENT PED "Sub-Ped": pedatyria indirectly involved (not struck) 006 INDRCT PED SUBSEQUENT PED "Sub-Ped": pedatyria indirectly involved (not struck) 007 HITCHIK HITCHIKR HITCHIKR HITCHIKR 008 PSNGR TOW PSNGR TOWED Passenger or non-motorist being towed or pushed on conveyance 009 ON/OFF V ON/OFF STOP VEH Getting on/off stopped/parked vehicle (occupants only; must have physical contact w/ vehicle) 011 MV PUSHD VEH BEING PUSHED Vehicle towed or had been towing another vehicle 012 MV TOWED VEH TOWED/TOWING Vehicle towed or had been towing another vehicle 013 FORCED FOR TON W SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 014 SET MOTN MV SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 015 RR ROW RALIROAD ROW At or on Light-Rail right-of-way 016 LT R	001			Occupant reli, jumped of was ejected from moving vehicle
Cools Door MINT Admin Information Instant Information Instant Information 000 INDRCT PED PEID INDRCTLY INVLV Pedestrian information Information 001 INDRCT BIK BIKE INDRCTLY INVLV Pedestrian information Information 002 INDRCT BIK BIKE INDRCTLY INVLV Pedestrian information 003 INDRCT BIK BIKE INDRCTLY INVLV Pedestrian information 004 INDRCT BIK BIKE INDRCTLY INVLV Pedestrian information 005 NUDRT BIK BIKE INDRCTLY INVLV Pedestrian information 007 HITCHHIKER HITCHHIKER HITCHHIKER 008 PSNRG TOWED PSNRG TOWED Passenger on non-motorist being towed or pushed on conveyance 009 ON/OFF V ON/OFF STOP VEH Getting on/off stopped/parked vehicle (occupants only; must have physical contact w/ vehicle 011 MV TOWED VEH TOWED/TOWING Vehicle towed or had been towing another vehicle 012 MV TOWED VEH TOWED/TOWING Vehicle torced by impact into another vehicle, pedalcyclist or pedestrian 014 MT R. NOTION Vehicle struck vehicle Vehicle tor on Light-Rali ri	002			Animal or insect in vehicle interfered with driver
Oor NUCKT FED FED INDUCT INVEST Fedestian inducty involved (not struck) 006 INDRCT BIK BIKE INDRCTLY INVLY Pedalcyclist indirectly involved (not struck) 007 HITCHIRR HITCHIRR HITCHIRR 008 PSNGR TOW PSNGR TOWED Passenger or non-motorist being lowed or pushed on conveyance 009 ON/OFF V ON/OFF STOP VEH Getting on/off stopped/parked vehicle (occupants only; must have physical contact w/ vehicle) 010 SUB OTRN SUBSEQ OVERTURN Overturned after first harmful event 011 MV PUSHD VEH DEUD/TOWING Vehicle being pushed 012 MV TOWED VEH TOWED/TOWING Vehicle forced by impact into another vehicle 013 FORCED FORCED BY IMPACT Vehicle forced by impact into another vehicle 014 SET MOTN MV SET IN MOTION Vehicle struct in motion by non-driver (child released brakes, etc.) 015 RR ROW Rall ROAD ROW At or on railroad right-of-way 016 LT RL ROW LGHT RAIL ROW At or on Light-Rail right-of-way 017 RR HIT V TRAIN HIT VEH Trains truck vehicle <th>003</th> <td></td> <td></td> <td></td>	003			
SUB-FLD Feadacycits (finitercity) involved (not struck) 007 HITCHIKR HITCHIKR </td <th>004</th> <td></td> <td></td> <td>"Sub Ded": redestrian injured subacquart to collision at</td>	004			"Sub Ded": redestrian injured subacquart to collision at
ODD INDRC ITSIN BIRE INDUCT INVECT Predadyclash Induced (information) 007 HITCHHIKE Hitchhiker (soliciting an ide) 008 PSINGR TOW PSINGR TOWED Passenger or non-motorist being towed or pushed on conveyance 009 ON/OFF V ON/OFF STOP VEH Getting on/off stopped/parked vehicle (occupants only; must have physical contact w/ vehicle) 011 MV PUSHD VEH BEING PUSHED Vehicle being pushed 012 MV TOWED VEH TOWED/TOWING Vehicle bewed or had been towing another vehicle. 013 FORCED FORCED BY IMPACT Vehicle browed or had been towing another vehicle. 014 SET MOTN MV SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 015 RR ROW RAILROAD ROW At or on Light-Rail right-of-way 016 LT RL ROW LI RAL ROW At or on Light-Rail right-of-way 017 RR HIT V TRAIN HIT VEH Traisro atruck vehicle 018 V HIT RR VEH HIT RC AR Vehicle struck train 019 HIT RR CAR VEH HIT RC CAR Vehicle struck rain 019	005			Sub-Ped : pedesitian injured subsequent to constant, etc.
OUT Init Chrinker Init Chrinker Init Chrinker 008 PSNGR TOW PSNGR TOWED Passenger or non-motorist being towed or pushed on conveyance 009 ON/OFF V ON/OFF STOP VEH Getting on/off stopped/parked vehicle (occupants only; must have physical contact w/ vehicle) 011 MV PUSHD VEH BEING PUSHED Vehicle being pushed 011 MV TOWED VEH TOWED/TOWING Vehicle bored by impact into another vehicle, pedalcyclist or pedestrian 012 MV TOWED VEH TOWED/TOWING Vehicle set in motion by non-driver (child released brakes, etc.) 014 SET MOTN MV SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 015 RR ROW RAILROAD ROW At or on alignt-of-way (not Light Rail) 016 LT RL ROW LIGHT RAIL ROW At or on Light-Rail right-of-way 017 RR HIT V TRAIN HIT VEH Train struck vehicle 018 V FIR R CAR Vehicle struck train 019 HIT RR CAR Vehicle struck train 019 JACKNIFE JackNife; trailer or towed vehicle struck towing vehicle 021 JA	000			
000 ON/OFF V ON/OFF STORY ON/OFF STORY 010 SUB OTRN SUBSEQ OVERTURN Overturned after first harmful event 011 MV PUSHD VEH BEING PUSHED Vehicle being pushed 012 MV TOWED VEH TOWED/TOWING Vehicle towed or had been towing another vehicle 013 FORCED FORCED BY IMPACT Vehicle forced by impact into another vehicle, pedalcyclist or pedestrian 014 SET MOTN MV SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 015 RR ROW RAILROAD ROW At or on railroad right-of-way 016 LT RL ROW LIGHT RAIL ROW At or on railroad right-of-way 017 RR HIT V TRAIN HIT VEH Train struck vehicle 018 V HIT RR VEH HIT RRIN Vehicle struck train 019 HIT RR CAR VEH HIT RR CAR Vehicle struck rainoad car on roadway 020 JACKNIFE JackKnife; trailer or towed vehicle struck towing vehicle 021 TRL OTRN TRAILER OTURN Trailer connection broke 022 CN BROKE TRIE or TURN Trailer connection broke 023 DETACH TRL	007			Passanger or non-motorist being towed or pushed on conveyance
000 ON/OPP V ON/OPP STOP VEH Getting Union subpleturpated vehicle (bocuptains bink), must have physical contact, wirvehicle) 010 SUB OTRN SUBSEQ OVERTURN Overturmed after first harmful event 011 MV PUSHD VEH BEING PUSHED Vehicle being pushed 012 MV TOWED VEH TOWED/TOWING Vehicle towed or had been towing another vehicle 013 FORCED FORCED BY IMPACT Vehicle forced by impact into another vehicle, pedalcyclist or pedestrian 014 SET MOTN MV SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 015 RR ROW RAILROAD ROW At or on railroad right-of-way (not Light Rail) 016 LT RL ROW Light Rail right-of-way (not Light Rail) 016 LT RL ROW Light Rail right-of-way (not Light Rail) 016 LT RL ROW Light Rail right-of-way (not Light Rail) 016 LT RL ROW LT RL ROW At or on railroad right-of-way (not Light Rail) 017 RR HIT V TRAIL ROW At or on Light-Rail right-of-way (not Light Rail) 017 RR HIT V TRAIL ROW Vehicle struck train (nore Light Rail right-of-way) </td <th>000</th> <td></td> <td></td> <td>Catting on/off stopped/parked vehicle (accurants only: must have physical contact w/ vehicle)</td>	000			Catting on/off stopped/parked vehicle (accurants only: must have physical contact w/ vehicle)
010 SUB STAN SUBSEQ EVENTION Overtainted and hirst flaminal event. 011 MV PUSHD VEH BEING PUSHED Vehicle being pushed 012 MV TOWED VEH TOWEDDTOWING Vehicle towed or had been towing another vehicle 013 FORCED FORCED BY IMPACT Vehicle towed or had been towing another vehicle. 014 SET MOTN MV SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 015 RR ROW RALROAD ROW At or on rairoad right-of-way (not Light Rail) 016 LT RL ROW LIGHT RAIL ROW At or on Light-Rail right-of-way (not Light Rail) 017 RR HIT V TRAIN HIT VEH Train struck vehicle 018 V HIT RR VEH HIT RR CAR Vehicle struck train 019 HIT RR CAR VEH HIT RC CAR Vehicle struck train 019 HIT RR CAR VEH HIT RR CAR Vehice struck train 020 JACKNIFE JACKKNIFE Jackknife; trailer or towed vehicle struck towing vehicle 021 TRL OTRN TRailer or towed vehicle overturned Trailer on towed vehicle overturned 022 CN BROKE TRLR CONN BROKE Trailer or towed vehicle struc	009			Quarture of after first hormful quant
011 MV FOSHD VEH TOWED/FOSHD Vehicle being pushed 012 MV TOWED VEH TOWED/FOSHD Vehicle towed or had been towing another vehicle 013 FORCED FORCED BY IMPACT Vehicle forced by impact into another vehicle, pedalcyclist or pedestrian 014 SET MOTN MV SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 015 RR ROW RAILROAD ROW At or on railroad right-of-way (not Light Rail) 016 LT RL ROW LIGHT RAIL ROW At or on Light-Rail right-of-way 017 RR HIT V TRAIN HIT VEH Train struck vehicle 018 V HIT RR VEH HIT TRAIN Vehicle struck train 019 HIT RR CAR VEH HIT RC CAR Vehicle struck railroad car on roadway 020 JACKNIFE JACKKNIFE Jackknife; trailer or towed vehicle struck towing vehicle 021 TRL OTRN TRailer OTURN Trailer or towed vehicle overturned 022 CN BROKE TRLR CONN BROKE Trailer or oneed vehicle overturned 023 DETACH TRL DETCHD TRLR STRKNG Detached trailing object struck other vehicle, non-motorist, or object 024 V DOOR OPN V DO	010			
0112 INV FORTED Verified Enveroid fractioned formed formed in the field enveloped and operations and the vehicle in the vehic	012			Vehicle towed or had been towing another vehicle
013 FORCED FORCED S HIMPACT Vehicle vehicle by inpact into another vehicle, pecalyclist of pedestrian 014 SET MOTN MV SET IN MOTION Vehicle set in motion by non-driver (child released brakes, etc.) 015 RR ROW RAILROAD ROW At or on rairoad right-of-way (not Light Rail) 016 LT RL ROW LIGHT RAIL ROW At or on Light-Rail right-of-way (not Light Rail) 017 RR HIT V TRAIN HIT VEH Train struck vehicle 018 V HIT RR VEH HIT RR CAR Vehicle struck train 019 HIT RR CAR VEH HIT RR CAR Vehicle struck train 019 HIT RR CAR VEH HIT RR CAR Vehicle struck train 019 JACKNIFE JACKKNIFE Jackknife; trailer or towed vehicle struck towing vehicle 020 JACKNIFE JACKKNIFE Jackknife; trailer or towed vehicle struck towing vehicle 021 TRL OTRN TRAILER OTURN Trailer connection broke 022 CN BROKE TRL CONN BROKE Trailer connection broke 023 DETACH TRL DETOHD TRLR STRKNG Detached trailing object struck other vehicle, non-motorist, or object 024 V DOOR OPN V DOOR OPN IN TRAF	012			Vehicle forced by impact into another vehicle pedalovelist or pedactrian
014 SET MONING We finde set in findboling feadabed blakes, etc.) 015 RR ROW RAILROAD ROW At or on railroad right-of-way (not Light Rail) 016 LT RL ROW LIGHT RAIL ROW At or on railroad right-of-way 017 RR HIT V TRAIN HIT VEH Train struck vehicle 018 V HIT RR VEH HIT TRAIN Vehicle struck train 019 HIT RR CAR VEH HIT RC CAR Vehicle struck railroad car on roadway 020 JACKNIFE JACKKNIFE JackKnife; trailer or towed vehicle struck towing vehicle 021 TRL OTRN TRAILER O'TURN Trailer or towed vehicle struck towing vehicle 022 CN BROKE TRL CONN BROKE Trailer or towed vehicle overturned 023 DETACH TRL DETCHD TRLR STRKNG Detached trailing object struck other vehicle, non-motorist, or object 024 V DOOR OPN V DOOR OPN IN TRAF Vehicle door opened into adjacent traffic lane 025 WHEELOFF WHEEL CAME OFF Wheel came off 026 HOOD UP HOOD FLEW UP Hood flew up 028 LOAD SHIFT LOAD SHIFTED Lost load, load moved or shifted 029	013			Vehicle set in metion by non-driver (shild released brakes, etc.)
013RR ROWRALEOAD ROWAt or on Light-Rail right-of-way016LT RL ROWLIGHT RAIL ROWAt or on Light-Rail right-of-way017RR HIT VTRAIN HIT VEHTrain struck vehicle018V HIT RRVEH HIT TRAINVehicle struck train019HIT RR CARVEH HIT RAINVehicle struck railroad car on roadway020JACKNIFEJACKKNIFEJackknife; trailer or towed vehicle struck towing vehicle021TRL OTRNTRAILER O'TURNTrailer or towed vehicle overturned022CN BROKETRL CONN BROKETrailer on towed vehicle overturned023DETACH TRLDETCHD TRLR STRKNGDetached trailing object struck other vehicle, non-motorist, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEEE/ELKWild animal, game (includes birds; not deer or elk)	014			At or on reitroad right of way (ant Light Dail)
010ETRE ROWEIGHT RALE ROWAction Eight Rain Injust-Aningitto-Iway0117RR HIT VTRAIN HIT VEHTrain struck vehicle018V HIT RRVEH HIT TRAINVehicle struck train019HIT RR CARVEH HIT RAINVehicle struck train020JACKNIFEJACKNIFEJackknife; trailer or towed vehicle struck towing vehicle021TRL OTRNTRAILER O'TURNTrailer or towed vehicle overturned022CN BROKETRL CONN BROKETrailer or towed vehicle overturned023DETACH TRLDETCHD TRLR STRKNGDetached trailing object struck other vehicle, non-motorist, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)035DEER ELKDEER DE KLDEER ELK	015			At or on Light Boil right of way
017KK HIT VTKAIN HIT VEITTrain study Vern018V HIT RRVEH HIT TRAINVehicle struck train019HIT RR CARVEH HIT RR CARVehicle struck rainoad car on roadway020JACKNIFEJACKKNIFEJackknife; trailer or towed vehicle struck towing vehicle021TRL OTRNTRAILER O'TURNTrailer or towed vehicle overturned022CN BROKETRLR CONN BROKETrailer or nometon broke023DETACH TRLDETCHD TRLR STRKNGDetached trailing object struck other vehicle, non-motorist, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSERIDER033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)035DEER ELKDEER PELKDecret and ku wariji	017			Train atruck vahiala
018VEN HIT RKVEN HIT RK ARVen HIT RK ARVenicle stuck tail019HIT RR CARVEH HIT RR CARVehicle struck railroad car on roadway020JACKNIFEJACKKNIFEJackknife; trailer or towed vehicle struck towing vehicle021TRL OTRNTRAILER O'TURNTrailer or towed vehicle overturned022CN BROKETRLR CONN BROKETrailer connection broke023DETACH TRLDETCHD TRLR STRKNGDetached trailing object struck other vehicle, non-motorist, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)035DEER ELKDEER OR ELKDeER OR ELK	017			
019HT KK CAKVEH HT KK CAKVehicle struck failed utal 0it foldoway020JACKNIFEJACKKNIFEJackknife; trailer or towed vehicle struck towing vehicle021TRL OTRNTRAILER O'TURNTrailer or towed vehicle overturned022CN BROKETRLR CONN BROKETrailer connection broke023DETACH TRLDETCHD TRLR STRKNGDetached trailing object struck other vehicle, non-motorist, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)035PEER ELKPEER OR ELKWild animal, game (includes birds; not deer or elk)	010			
020SACKNIFESACKNIFESacknife, trailer of towed vehicle stuck towing vehicle021TRL OTRNTRAILER O'TURNTrailer or towed vehicle overturned022CN BROKETRLR CONN BROKETrailer or towed vehicle overturned023DETACH TRLDETCHD TRLR STRKNGDetached trailing object struck other vehicle, non-motorist, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWid animal, game (includes birds; not deer or elk)	019			leakknife: trailor or tawad vahiala atruak tawing vahiala
021INCLER OF IGKNInalle of towed venicle overtained022CN BROKETRLR CONN BROKETrailer connection broke023DETACH TRLDETCHD TRLR STRKNGDetached trailing object struck other vehicle, non-motorist, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)	020			Trailer or towed vehicle overturned
022CN BROKETREPCONN BROKETraine connection broke023DETACH TRLDETCHD TRLR STRKNGDetached trailing object struck other vehicle, non-motorist, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)025DEER ELKDEER OR ELKDeer or olk word?	021			
023DETACH TREDETOND TRERSTRANGDetached training object struck other vehicle, notherholdins, or object024V DOOR OPNV DOOR OPN IN TRAFVehicle door opened into adjacent traffic lane025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)	022			Detached trailing chiect struck other vehicle, non motorist, or chiect
024V DOOR OF NV DOOR OF N IN TRAIVenicle door opened into adjacent traine rate025WHEELOFFWHEEL CAME OFFWheel came off026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)	023			Vehicle door opened into adjacent traffic lane
025WILLEUTINWILLEUTINWILLEUTINWILLEUTIN026HOOD UPHOOD FLEW UPHood flew up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)	024			
026HOOD FILLWOIHood new up028LOAD SHIFTLOAD SHIFTEDLost load, load moved or shifted029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)	020			
020LOAD OF IN TO ECOAD OF IN TELDLoad hoved of shined029TIREFAILTIRE FAILURETire failure030PETPETPet: cat, dog and similar031LVSTOCKLIVESTOCKStock: cow, calf, bull, steer, sheep, etc.032HORSEHORSEHorse, mule, or donkey033HRSE&RIDHORSE & RIDERHorse and rider034GAMEGAME NO DEER/ELKWild animal, game (includes birds; not deer or elk)	020			Lost load moved or shifted
030 PET PET Pet: cat, dog and similar 031 LVSTOCK LIVESTOCK Stock: cow, calf, bull, steer, sheep, etc. 032 HORSE HORSE Horse, mule, or donkey 033 HRSE&RID HORSE & RIDER Horse and rider 034 GAME GAME NO DEER/ELK Wild animal, game (includes birds; not deer or elk)	020			
031 LVSTOCK LIVESTOCK Stock: cow, calf, bull, steer, sheep, etc. 032 HORSE HORSE Horse, mule, or donkey 033 HRSE&RID HORSE & RIDER Horse and rider 034 GAME GAME NO DEER/ELK Wild animal, game (includes birds; not deer or elk)	020	PET	PET	Pet: cat dog and similar
032 HORSE HORSE Horse, mule, or donkey 033 HRSE&RID HORSE & RIDER Horse and rider 034 GAME GAME NO DEER/ELK Wild animal, game (includes birds; not deer or elk)	031	IVSTOCK	LIVESTOCK	Stock: cow, calf hull steer sheep etc
033 HRSE&RID HORSE & RIDER Horse and rider 034 GAME GAME NO DEER/ELK Wild animal, game (includes birds; not deer or elk) 035 DEER ELK DEER OR ELK Deer or elk wasi'iii	032	HORSE	HORSE	Horse mule or donkey
034 GAME GAME NO DEER/ELK Wild animal, game (includes birds; not deer or elk) 035 DEER ELK Deer or elk	033	HRSE&RID	HORSE & RIDER	Horse and rider
	034	GAME	GAME NO DEER/ELK	Wild animal, game (includes birds: not deer or elk)
	035			Deer or elk wapiti
036 ANMI VEH ANIMAI -DRAWN VEH Animal-drawn vehicle	036		ANIMAL-DRAWN VEH	Animal-drawn vehicle
037 CULVERT CULVERT/MANHOLE Culvert. open low or high manhole	037	CULVERT	CULVERT/MANHOLE	Culvert, open low or high manhole
038 ATENUATN IMPACT CUSHION Impact attenuator	038	ATENUATN	IMPACT CUSHION	Impact attenuator
039 PK METER PARKING METER Parking meter	039	PK METER	PARKING METER	Parking meter
040 CURB CURB Curb (also narrow sidewalks on bridges)	040	CURB	CURB	Curb (also narrow sidewalks on bridges)
041 JIGGLE JIGGLE BAR N/MED Jiggle bar or traffic snake for channelization	041	JIGGLE	JIGGLE BAR N/MED	Jiggle bar or traffic snake for channelization

Code	Short Description	Medium Description	Long Description
042	GDRL END	GUARDRAIL END	Leading edge of guardrail
043	GARDRAIL	GUARDRAIL	Guard rail (not metal median barrier)
044	BARRIER	MEDIAN BARRIER	Median barrier (raised or metal)
045	WALL	WALL	Retaining wall or tunnel wall
046	BR RAIL	BRIDGE RAIL	Bridge railing or parapet (on bridge or approach)
047	BR ABUTMNT	BRIDGE ABUTMENT	Bridge abutment (included "approach end" thru 2013)
048	BR COLMN	BRIDGE COLUMN	Bridge pillar or column
049	BR GIRDR	BRIDGE GIRDER	Bridge girder (horizontal bridge structure overhead)
050	ISLAND	TRAFFIC ISLAND	Traffic raised island
051	GORE	GORE	Gore
052	POLE UNK	POLE-UNKNOWN	Pole – type unknown
053	POLE UTL	POLE-UTILITY	Pole – power or telephone
054	ST LIGHT	POLE-ST LIGHT	Pole – street light only
055	TRF SGNL	POLE-TRAF SIGNAL	Pole – traffic signal and ped signal only
056	SGN BRDG	POLE-SIGN BRIDGE	Pole – sign bridge
057	STOPSIGN	STOP/YIELD SIGN	Stop or yield sign
058	OTH SIGN	OTHER SIGN	Other sign, including street signs
059	HYDRANT	HYDRANT	Hydrant
060	MARKER	DELINEATOR	Delineator or marker (reflector posts)
061	MAILBOX	MAILBOX	Mailbox
062	TREE	TREE/STUMP	Tree, stump or shrubs
063	VEG OHED	VEGTN OVER RDWY	Tree branch or other vegetation overhead, etc.
064	WIRE/CBL	CABLE ACROSS RD	Wire or cable across or over the road
065	TEMP SGN	TEMP SIGN/BARR	Temporary sign or barricade in road, etc.
066	PERM SGN	PERM SIGN/BARR	Permanent sign or barricade in/off road
067	SLIDE	SLIDE/ROCKS	Slides, fallen or falling rocks
068	FRGN OBJ	FOREIGN OBJECT	Foreign obstruction/debris in road (not gravel)
069	EQP WORK	EQUIP WORKING	Equipment working in/off road
070	OTH EQP	OTHER EQUIPMENT	Other equipment in or off road (includes parked trailer, boat)
071	MAIN EQP	MAINTNCE EQUIP	Wrecker, street sweeper, snow plow or sanding equipment
072	OTHER WALL	OTHER WALL	Rock, brick or other solid wall
073	IRRGL PVMT	IRREGULAR PAVEMENT	Other bump (not speed bump), pothole or pavement irregularity (per PAR)
074	OVERHD OBJ	OTHER OVERHEAD OBJ	Other overhead object (highway sign, signal head, etc.); not bridge
075	CAVE IN	CAVE IN	Bridge or road cave in
076	HI WATER	HIGH WATER	High Water
077	SNO BANK	SNOW BANK	Snow Bank
078	LO-HI EDGE	LOW-HIGH PVMNT EDGE	Low or high shoulder at pavement edge
079	DITCH	CUT SLOPE/DITCH	Cut slope or ditch embankment
080	OBJ FRM MV	OBJ FRM OTHR VEH	Struck by rock or other object set in motion by other vehicle (incl. lost loads)
081	FLY-OBJ	OTHER MOVING OBJ	Struck by rock or other moving or flying object (not set in motion by vehicle)
082	VEH HID	VEH OBSCURE VIEW	Vehicle obscured view
083	VEG HID	VEG OBSCURE VIEW	Vegetation obscured view

Code	Short Description	Medium Description	Long Description
084		BLD OBSCURE VIEW	View obscured by fence, sign, phone booth, etc.
085	WIND GUST	WIND GUST	Wind Gust
086	IMMERSED	IMMERSION	Vehicle immersed in body of water
087	FIRE/EXP	FIRE/EXPLOSION	Fire or explosion
088	FENC/BLD	FENCE/BUILDING	Fence or building, etc.
089	OTHR CRASH	REFER OTHR CRASH	Crash related to another separate crash
090	TO 1 SIDE	TWO WAY ONE SIDE	Two-way traffic on divided roadway all routed to one side
091	BUILDING	BUILDING	Building or other structure
092	PHANTOM	PHANTOM VEH	Other (phantom) non-contact vehicle
093	CELL PHONE	CELL PHONE PER PAR	Cell phone (on PAR or driver in use)
094	VIOL GDL	VIOL GRAD DR LIC	Teenage driver in violation of graduated license pgm
095	GUY WIRE	GUY WIRE	Guy wire
096	BERM	BERM	Berm (earthen or gravel mound)
097	GRAVEL	GRAVEL IN RDWY	Gravel in roadway
098	ABR EDGE	ABRUPT EDGE	Abrupt edge
099	CELL WTNSD	CELL PHONE WITNESSED	Cell phone use witnessed by other participant
100	UNK FIXD	UNK FIX OBJ	Fixed object, unknown type.
101	OTHER OBJ	OTHER OBJ NOT FIXED	Non-fixed object, other or unknown type
102	TEXTING	TEXTING	Texting
103	WZ WORKER	WZ WORKER	Work Zone Worker
104	ON VEHICLE	RIDE ON VEH EXTERIOR	Passenger riding on vehicle exterior
105	PEDAL PSGR	PSNGR ON PEDALCYCLE	Passenger riding on pedalcycle
106	MAN WHLCHR	NONMOTOR WHEELCHAIR	Pedestrian in non-motorized wheelchair
107	MTR WHLCHR	MOTORIZED WHEELCHAIR	Pedestrian in motorized wheelchair
108	OFFICER	POLICE OFFICER	Law Enforcement / Police Officer
109	SUB-BIKE	SUBSEQUENT BICYCLIST	"Sub-Bike": pedalcyclist injured subsequent to collision, etc.
110	N-MTR	NM STR VEH	Non-motorist struck vehicle
111	S CAR VS V	ST CAR STRUCK VEH	Street Car/Trolley (on rails or overhead wire system) struck vehicle
112	V VS S CAR	VEH STRUCK ST CAR	Vehicle struck Street Car/Trolley (on rails or overhead wire system)
113	S CAR ROW	STREET CAR ROW	At or on street car or trolley right-of-way
114	RR EQUIP	VEH STRUCK RR EQUIP	Vehicle struck railroad equipment (not train) on tracks
115	DSTRCT GPS	DISTRACT GPS DEVICE	Distracted by navigation system or GPS device
116	DSTRCT OTH	DISTRACT OTHR DEVICE	Distracted by other electronic device
117	RR GATE	RR DROP-ARM GATE	Rail crossing drop-arm gate
118	EXPNSN JNT	EXPANSION JOINT	Expansion joint
119	JERSEY BAR	JERSEY BARRIER	Jersey barrier
120	WIRE BAR	WIRE BARRIER	Wire or cable median barrier
121	FENCE	FENCE	Fence
123	OBJ IN VEH	LOOSE OBJ IN VEHICLE	Loose object in vehicle struck occupant
124	SLIPPERY	SLIPPERY SURFACE	Sliding or swerving due to wet, icy, slippery or loose surface (not gravel)
125	SHLDR	SHLDR GAVE	Shoulder gave way
126	BOULDER	ROCKS / BOULDER	Rock(s), boulder (not gravel; not rock slide)

Code	Short Description	Medium Description	Long Description
127	LAND SLIDE	ROCK OR LAND SLIDE	Rock slide or land slide
128	CURVE INV	CURVE PRESENT	Curve present at crash location
129	HILL INV	HILL PRESENT	Vertical grade / hill present at crash location
130	CURVE HID	CURVE OBSCURED VIEW	View obscured by curve
131	HILL HID	HILL OBSCURED VIEW	View obscured by vertical grade / hill
132	WINDOW HID	WINDOW VIEW OBSCURED	View obscured by vehicle window conditions
133	SPRAY HID	SPRAY OBSCURED VIEW	View obscured by water spray

Oregon Department of Transportation

2

2015 - On-State, Top 10% SPIS Groups - By Hwy, MP

Rte	Rdwy	BMP	EMP 1	Length	ADT	Crash	Fatal	Α	В	С	PDO	City	County	Connection	Percent	SPIS
001	Paci	fic														
I-5	1	231.89	232.06	0.17	49,900	7	0	2	4	0	1		Linn		90	51.98
I-5	1	234.91	235.09	0.18	60,700	20	1	0	2	8	9		Linn		90	53.17
I-5	1	235.93	236.11	0.18	58,700	14	1	2	3	5	3		Linn		95	65.36
τ.5	1	228.02	220.00	0.17	57 200	22	0	1	2	10	0		Linn		05	50.42
1-5	1	238.92	239.09	0.17	57,500	23	0	1	3	10	7		LIIII		95	39.43
I-5	1	241.91	242.08	0.17	57,100	16	0	1	1	8	6		Marion		90	49.52
I-5	1	242.91	243.07	0.16	57,200	29	0	0	3	12	14		Marion		90	48.85
I-5	1	243.94	244.09	0.15	57,000	20	0	1	3	6	10		Marion		90	51.84
1.5	1	261.01	262.10	0.10	80.200	0	0	2	1	2	2		Marian		05	61.20
1-5	1	201.91	262.10	0.19	89,200	8	0	3	1	2	2		Marion		95	61.20
I-5	1	280.93	281.09	0.16	87,200	9	1	1	0	3	4		Clackamas		90	51.55
000	Oro	TON (onst													
	Ule		Jast	0.10	7.500	4	0	2	1	0	1				00	47.06
US-101	1	2.41	2.59	0.18	7,500	4	0	2	1	0	1		Clatsop		90	47.96
US-101	1	4.32	4.40	0.08	20.600	30	0	0	3	6	21	Astoria	Clatsop		90	45.78
					.,											
US-101	1	6.48	6.58	0.10	13,500	20	0	0	1	10	9	Warrenton	Clatsop		90	45.29
US-101	1	7.96	8.09	0.13	13,600	16	1	0	4	5	6	Warrenton	Clatsop	SE ENSIGN LN.	90	55.55
									_	_	_					
US-101	1	20.37	20.52	0.15	17,333	14	0	1	3	5	5	Seaside	Clatsop	12TH AVE.	90	50.97
US-101	1	21.04	21.15	0.11	17 200	18	1	0	2	4	11	Seaside	Clatson	BROADWAY	90	51 31
05 101	1	21.01	21.10	0.11	17,200	10	1	0	2			Seuside	Clusop	BROAD WAT	20	51.51
US-101	1	64.48	64.66	0.18	18,400	19	0	2	4	4	9	Tillamook	Tillamook	ROAD	95	67.45
US-101	1	112.26	112.44	0.18	18,800	13	0	2	1	5	5	Lincoln City	Lincoln	DEVILS LAKE GOLF	95	64.00
														CLUB KD.		
US-101	1	113.15	113.27	0.12	22,900	16	0	2	1	5	8	Lincoln City	Lincoln	NE 34TH ST.	95	63.16
110 101	1	112.24	112.44	0.10	22 400	7	1	1	1	2	2		T · 1		00	51.02
US-101	1	113.34	115.44	0.10	23,400	/	1	1	1	2	2	Lincoin City	Lincoln	NE HULMES KD.	90	51.93
US-101	1	114.13	114.21	0.08	19.600	21	0	0	1	11	9	Lincoln Citv	Lincoln	17TH ST.	90	45.10
					. ,	-		-	-	-	-			-		
US-101	1	116.44	116.52	0.08	21,200	5	0	2	0	2	1	Lincoln City	Lincoln	SE 28TH ST.	90	48.10
US-101	1	139.23	139.41	0.18	24,700	22	0	1	1	10	10	Newport	Lincoln	NW 20TH ST.	95	57.32

**Crash data shown in the SPIS group report results from the summation of crash data between the begin and end mile points of the Group. **ADT, SPIS Score, and Percent data shown in the SPIS group report are the highest values from all sites within the Group.

		General & Site Informaiton				
Analyst:	AARO	Highway Number and Name:	Hwy 9, 104, 105, 485			
Agency/Company:	DEA	Mile Points:				
Date:	10/31/2016	Crash Years Pulled:	2010-2014			
Project Name:	Warrenton TSP	Limiting Probability:	0.9			

	Turn Crashes										
					Excess						Excess
MP	RefPop	Street 1	Street 2	Probability	Proportion	MP	RefPop	Street 1	Street 2	Probability	Proportion
	8.05 4SG	ENSIGN AVE	OREGON COAST HY	0.96	0.21						

			Rear Crashes		
					Excess
MP	RefPop	Street1	Street2	Probability	Proportion
	6.83 3SG	NEPTUNE DR	OREGON COAST HY	0.96	0.14

			Notes	
				Excess
MР	RefPop	Street 1	Street 2	Probability Proportion

Appendix F

Critical Crash Rate

For Calcı	ilations O	nly					<u></u>	M Part B - Critical Crash Rate			
TEV	ADT	MEV	Intersection	Intersection Type (Population)	Crash Rate	Reference Population Critical Crash Rate (95% Cl)	Statewide 90th Percentile Crash Rate	Intersection Control	Unsignalized Intersections	Signalized Intersections	Summary
300	2520	5	Pacific Dr at Willow St/Lake Dr	4ST	0.00	0.52	0.41	STOP	0.00	FALSE	0.00
296	2486	5	Pacific Dr at Iredale St	4ST	0.44	0.52	0.41	STOP	0.44	FALSE	0.44
721	6056	11	OR 104/S Main Ave/Ft Stevens Hwy	4ST	0.27	0.36	0.41	STOP	0.27	FALSE	0.27
1460	12264	22	OR 104/Ft Stevens Hwy at NE Skipar	4ST	0.13	0.28	0.41	STOP	0.13	FALSE	0.13
1298	10903	20	Warrenton-Astoria Hwy at SE Galen	3ST	0.30	0.29	0.29	STOP	0.30	FALSE	0.30
1310	11004	20	E Harbor St at Marlin Dr	3ST	0.00	0.29	0.29	STOP	0.00	FALSE	0.00
1200	10080	18	E Harbor St at SE Neptune Dr	3ST	0.00	0.30	0.29	STOP	0.00	FALSE	0.00
1230	10332	19	E Harbor St at Young's Bay Plaza Acc	4ST	0.00	0.30	0.41	STOP	0.00	FALSE	0.00
2890	24276	44	E Harbor St at US 101 (signalized)	3SIG	0.86		0.51	SIGNAL	FALSE	0.86	0.86
85	714	1	SW 2nd St/SW Gardenia Ave	4ST	0.00	1.04	0.41	STOP	0.00	FALSE	0.00
955	8022	15	OR 104/S Main Ave at SW 2nd St	4ST	0.55	0.32	0.41	STOP	0.55	FALSE	0.55
2330	19572	36	US 101 at SE Neptune Dr (signalized	3SIG	0.76		0.51	SIGNAL	FALSE	0.76	0.76
2545	21378	39	US 101 at Marlin Dr (signalized)	4SIG	1.15		0.86	SIGNAL	FALSE	1.15	1.15
275	2310	4	NW Ridge Rd at SW 9th St	3ST	0.47	0.53	0.29	STOP	0.47	FALSE	0.47
824	6922	13	SW 9th St at OR 104/Ft Stevens Hw	4ST	0.24	0.34	0.41	STOP	0.24	FALSE	0.24
2100	17640	32	OR 104S/Ft Stevens Hwy Spur at US	4ST	0.06	0.25	0.41	STOP	0.06	FALSE	0.06
400	3360	6	US 101Bus/Warrenton-Astoria Hwy	3ST	0.33	0.45	0.29	STOP	0.33	FALSE	0.33
197	1655	3	Delaura Beach Ln at Ridge Rd	3ST	0.33	0.63	0.29	STOP	0.33	FALSE	0.33
765	6426	12	OR 104S/Ft. Stevens Spur at OR 104	3ST	0.09	0.34	0.29	STOP	0.09	FALSE	0.09
465	3906	7	SW 18th St/Delaura Beach Ln at S M	3ST	0.14	0.42	0.29	STOP	0.14	FALSE	0.14
3015	25326	46	SE Ensign Ln at US 101 (signalized)	4SIG	0.63		0.86	SIGNAL	FALSE	0.63	0.63
605	5082	9	SE Ensign Ln at SE 19th St	4ST	0.00	0.38	0.41	STOP	0.00	FALSE	0.00
690	5796	11	SE Ensign Ln at US 101Bus/Warrent	3ST	0.00	0.36	0.29	STOP	0.00	FALSE	0.00
1791	15044	27	US 101 at SE Dolphin Ave	4ST	0.00	0.26	0.41	STOP	0.00	FALSE	0.00

Urban (mean crash rates)						
3SIG	0.28					
4SIG	0.48					
3ST	0.13					
4ST	0.20					

Average Crash Rate Per population

U	• •
3SIG	
4SIG	
3ST	0.12848643
4ST	0.132136878

Crash rate exceeds critical crash rate

Crash rate exceeds Statewide 90th Percentile

Appendix G

Bicycle Level of Traffic Stress

1 Lane per dir	ection		≥2 lanes per direction		
Prevailing or	≥15' bike	14' – 14.5'	≤13' bike	\geq 15' bike	≤14.5' bike
Posted Speed	lane +	bike lane +	lane +	lane +	lane +
	parking	parking	parking or	parking	parking or
			Frequent		Frequent
			blockage		blockage
≤25 mph	LTS 1	LTS 2	LTS 3	LTS 2	LTS 3
30 mph	LTS 1	LTS 2	LTS 3	LTS 2	LTS 3
35 mph	LTS 2	LTS 3	LTS 3	LTS 3	LTS 3
≥40 mph	LTS 2	LTS 4	LTS 4	LTS 3	LTS 4

Exhibit 14-2 Bike Lane with Adjacent Parking Lane Criteria

¹Typically occurs in urban areas (i.e. delivery trucks, parking maneuvers, stopped buses).

Exhibit 14-3 Bike Lane without Adjacent Parking Lane Criteria

1 Lane per di	irection				≥2 lanes per direction		
Prevailing	≥7°	5.5° – 7°	≤ 5.5°	Frequent	≥7°	<7° bike	
or Posted	(Buffered	Bike lane	Bike lane	bike lane	(Buffered	lane or	
Speed	bike lane)			blockage ¹	bike	frequent	
					lane)	blockage ¹	
≤30 mph	LTS 1	LTS 1	LTS 2	LTS 3	LTS 1	LTS 3	
35 mph	LTS 2	LTS 3	LTS 3	LTS 3	LTS 2	LTS 3	
≥40 mph	LTS 3	LTS 4	LTS 4	LTS 4	LTS 3	LTS 4	

^TTypically occurs in urban areas (i.e. delivery trucks, parking maneuvers, stopped buses).

Exhibit 14-4 Urban/Suburban Mixed Traffic Criteria

Prevailing	Unmarked	l lane per	2 lanes per	3+ lanes per
Speed or	Centerline	direction	direction	direction
Speed Limit				
(mph)				
$\leq 25^{1}$	LTS 1	LTS 2	LTS 3	LTS 4
30	LTS 2	LTS 3	LTS 4	LTS 4
≥35	LTS 3	LTS 4	LTS 4	LTS 4

¹Presesence of "sharrow" markings may reduce the LTS by a level for 25 mph or less sections depending on overall area context.

		Intersection			On-Street		Bike Lane	Bike Lane	Lanes per
From	То	Segment	LTS	Speed	Parking	Shoulders	Width	Both Sides?	Direction
1	2	Pacific Dr between Willow St & Iredale St (1-2)	2	25	No	4'		No	1
1	14	Ridge Rd between Pacific Dr and SW 9th St (1-14)	4	45	No	2'-4'		No	1
2	3	Pacific Dr between Iredale St and 1st St (2-3)	4	45	No	4'-6'		No	1
3	4	Main Ave between NW 1st St and OR 104 (3-4)	3	35	No	None	< 5.5'	Yes	1
4	15	US 104 between Harbor Dr and SW 9th St (4-15)	2	25	Yes	None		No	1
4	5	Harbor Dr between OR 104 and SE Galena Ave (4-5)	4	35	No	4'-9'		No	1
5	6	Harbor Dr between SE Galena Ave and Marlin Dr (5-6)	4	35	No	4'-9'		No	1
5	15	SE Galena/7th St between Harbor Dr and US 104 (5-15)	4	25	No	None		No	1
6	7	Harbor Dr between Marlin Dr and SE Neptune Dr (6-7)	4	45	No	4'-6'		No	1
6	13	Marlin Dr between Harbor Dr and Us 101 (6-13)	3	35	No	0'-6'	< 5.5'	Yes and No	1
7	9	Harbor Dr between SE Neptune Dr and US 101 (7-9)	4	45	No	4'-6'		No	1
7	12	SE Neptune Dr between Harbor Dr and US 101 (7-12)	2	35	No	None		No	1
9	13	US 101 between Harbor Dr and Marlin Ave (9-13)	4	45	No	6'-12'		No	1
10	11	SW 2nd St between SW Gardenia Ave and OR 104 (10-11)	2	25	Yes		No Centerline		
13	17	Marlin Dr between US 101 and US 101B (13-17)	3	35	No	1'-5'		No	1
14	15	SW 9th St between NW Ridge Rd. and US 104 (14-15)	4	35	No	No		No	1
14	18	NW Ridge Rd. between SW 9th St and SW 18th St (14-18)	4	45	No	2'		No	1
15	19	US 104 between SW 9th St and US 104S (15-19)	3	35	No	No	< 5.5'	Yes	1
16	17	US 101 Bus between US 101 and Marlin Dr (16-17)	4	45	No	1'-5'		No	1
16	19	US 104S between US 104 and US 101 (16-19)	4	45	No	1'-6'		No	1
16	21	US 101 between US 104S and SE Ensign Ln (16-21)	4	45	No	6'-8'		No	1
17	23	US 101 Bus between Marlin Dr and SE Ensign Ln (17-23)	4	45	No	5'-8'		No	1
18	20	SW 18th St between Ridge road and US 104 (18-20)	3	45	No	2'-4'	< 5.5'	No	1
19	20	US 104 between US 104S and SW 18th St (19-20)	3	35	No	2'-4'		No	1
21	22	SE Ensign Ln between US 104 and 19th St (21-22)	2	35	No	None	5.5'-7'	Yes	2
22	23	SE Ensign Ln between 19th St and US 101 Business (22-23)	1	45	No	None	5.5'-7'	Yes	1
21	24	US 101 between SE Ensign St and SE Dolphin Ave (21-24)	4	55	No	6'-8'		No	2

SECTION 6 **TECH MEMO SIX** FUTURE FORECASTING

DRAFT MEMORANDUM #6

SUBJECT:	Warrenton Transportation System Plan Update Future Forecasting DRAFT	P14180-008
FROM:	Ray Delahanty, AICP, DKS Associates	
TO:	Warrenton TSP Project Management Team	
DATE:	September 8, 2017	

Future forecasting, or estimating future travel demand, is an important step in the transportation planning process. This memorandum documents the forecasting process and future forecast results for the Warrenton TSP study area. Within these sections, the land use assumptions, model calibration, post-processing methodology, and resulting 2040 traffic volumes for average weekday traffic and the seasonal summer peak (30th HV) that will be used to analyze future transportation conditions in the project corridor are documented.

Future Forecasting Process

The process for developing future 2040 traffic volume forecasts for Warrenton involved three keys components:

- The Astoria-Warrenton regional travel demand model was utilized as the primary tool to estimate future travel demand in Warrenton, using a base model year of 2015 and a future model year of 2035.
- Refined travel demand forecasts were developed by adding local circulation characteristics in the travel demand model as needed (using a focus area approach).
- The 20-year growth increment between the base and future year models was extrapolated to a 25-year increment and then added to the base year 2015 count data (referred to as post-processing) to develop final year 2040 traffic volume forecasts for Warrenton.

The following sections summarize the three components of the future forecasting process.

Astoria-Warrenton Travel Demand Model

The existing Astoria-Warrenton regional travel demand model¹ was utilized as the primary tool to estimate future travel demand in Warrenton. The model includes the major roadways in and around the cities of Warrenton and Astoria, such as US 101, OR 202, the Astoria-Megler bridge, and US 30 (see Figure 1). Land use data within the model area is divided into transportation analysis zones (TAZs), which represent the origins and destinations for traffic trips throughout the region. Estimates of trips generated from each TAZ are based on associated land use data. In addition, regional trip growth on facilities connecting to the Astoria-Warrenton area are accounted for by extrapolating historic growth trends. Forecasts were developed to estimate travel demand during both the average weekday and peak seasonal (30 HV) conditions.

Figure 1: Astoria-Warrenton Regional Travel Demand Model Area

The project team collaborated to develop land use assumptions for a 2015 base scenario and 2035 future scenario of the Astoria-Warrenton model for this study. Table 1 lists the total land use estimates for the City of Warrenton Urban Growth Boundary (UGB)² for 2015 and 2035 Figures 2 and 3 show the existing UGB for the City of Warrenton, as well as the TAZs used in the regional travel demand model, including assumed household and employment growth between 2015 and 2035.

¹ The Astoria-Warrenton regional travel demand model is managed by the Oregon Department of Transportation (ODOT) Transportation Planning and Analysis Unit (TPAU).

² Land use data by individual TAZ cannot be reported due to confidentiality of employment information.

As shown in Table 1, the 2015 model included approximately 2,179 households (representing 5,175 people) and 3,410 employees within the Warrenton UGB. With expected growth to the horizon year 2035, 579 households (or about 27 percent growth) are projected to be added, while the total employment is projected to grow by approximately 1,370 employees (40 percent growth). These future totals within the UGB were established in coordination with City using new population forecasts for Clatsop County and its cities.³

Warrenton is currently experiencing a steep growth trajectory with several housing subdivision and employment-related land use applications being filed. The control totals shown in Table 1 represent our best estimate of 20-year growth given the available data and studies, and we understand that growth will not be linear over the 20 years.

Land Use	2015	2035	Projected Growth (2015 to 2035)
Households	2,179	3,153	974 (+45%)
Population	5,175	7,410	2,235 (+43%)
Employment (Total)	3,410	4,934	1,524 (+45%)
Agriculture Employees	30	35	5 (+17%)
Industrial Employees	530	1,132	602 (+114%)
Retail Employees	1,210	1,605	395 (+33%)
Service Employees	993	1,310	317 (+32%)
Education Employees	176	232	56 (+32%)
Government Employees	155	204	49 (+32%)
Other Employees	316	416	100 (+32%)

Table 1: Warrenton UGB Land Use Summary

Notes: Land use summary based on travel demand model and zones that approximate the Warrenton UGB

2015 and 2035 Scenarios

The base year of the Astoria-Warrenton model is 2002. Because significant changes have occurred in Warrenton between 2002 and 2015 (when traffic counts were conducted for this study), the project team elected to develop an updated 2015 scenario to use for the base-year model in the forecasting process. In addition, to allow for 20 years of growth beyond the TSP adoption date (expected in 2018), a 2035 scenario was developed. The 2035 scenario allows for an additional five years of growth extrapolation to develop 2040 traffic volumes.

Model inputs, including external station traffic volumes, land use data and roadway network changes were updated (from 2002 to 2015). 2015 household and employment data were obtained for both Warrenton and Astoria⁴, reviewed by each City's staff, and adjusted to reflect 2015 land use conditions. The roadway network has changed since 2002 as well, including the construction of Ensign Lane. These changes were incorporated into the 2015 base-year scenario and 2035 scenario as well. The most recent published traffic volumes were obtained from ODOT's traffic volume tables (TVT) and adjusted to 2015 and 2035, respectively, by extrapolating the growth rates obtained from ODOT's future volume tables.

These inputs were provided to TPAU for input into the 2002 base-year model, resulting in a 2015 scenario. The resulting 2015 traffic volumes were then calibrated for use in post-processing. Similar inputs were provided to TPAU for input into the Astoria-Warrenton 2035 model.

³ Coordinated Population Forecast for Clatsop County, its Urban Growth Boundaries (UGB), and Area Outside UGBs 2017-2067. Prepared by Population Research Center, Portland State University, 2017.

⁴ Employment data obtained from Oregon Employment Department for 2014, provided to DKS via TPAU.

Figure 2: Household and Employment Growth Forecasts, 2015-2035

Application of Regional Demand Model

As shown in Figure 1, the Astoria-Warrenton regional travel demand model has a regional scale and the roadway network includes the primary arterial and collector roadways in the model area. Many local roadways are commonly not included in regional models because they are not significant to regional travel patterns. As a result, regional models like the Astoria-Warrenton model have limited accuracy in forecasting circulation and routing on local streets and should be used carefully. Regional models also do not typically have sufficient detail to directly forecast intersection turn movements, even on roadways included in the model. Engineering judgment and manual methods (such as evaluating screen lines) are often needed to "post-process" model results to estimate turn movement volumes and to account for circulation and routing at the local level.

Post-Processing

While the travel demand models were calibrated to local conditions and volumes, raw volumes from the travel demand model were not used for capacity analysis. Rather, motor vehicle turn movement volume forecasts were developed using post-processing methods consistent with the ODOT Analysis Procedures Manual⁵. This approach is derived from methodologies outlined in the National Cooperative Highway Research Program (NCHRP) Report 255, *Highway Traffic Data for Urbanized Area Project Planning and Design*.

The post-processing methodology involves estimating model growth (i.e., volume differences between base and future models), scaling the growth by the number of forecast years (i.e., forecast years divided by difference in model years), and adding these volumes to existing traffic counts⁶. Traffic growth on links in the travel demand models were applied to individual turn movements using a Frater method to account for growth on both inbound and outbound links. Engineering judgment is used as part of the post-processing methodology, with the routing decisions identified in the model serving as a helpful starting point in making volume adjustments. The result of this process is a future year forecast derived from the Astoria-Warrenton regional travel demand model that is calibrated to observed data.

Future Forecasting Results

The primary purpose of forecasting 2040 traffic volumes is to allow analysis of future traffic conditions to identify operational needs and potential transportation improvements in the City of Warrenton. This following sections document the future forecasting methodology, roadway network changes, and 2040 traffic volume forecasts.

Roadway Network Changes

Because there are no additional transportation capacity projects with committed funding (e.g., STIP or CIP), no network changes were applied within the study windowed-area or in the regional Astoria-Warrenton model. For both the newly developed 2015 scenario and the future 2035 scenario, we revised the Warrenton network to include SE Ensign Lane between Fort Stevens Highway Spur (west of US 101) and US 101 Business (east of US 101). This recently constructed facility was not included in previous versions of the model.

⁵ Analysis Procedures Manual (APM), Oregon Department of Transportation (ODOT) Transportation Planning Analysis Unit (TPAU), Last Updated June 2010, pgs. 91-92

⁶ The traffic counts for the Astoria TSP study intersections were collected in 2011 and adjusted to average weekday and 30th highest hour (summer peak) conditions, as documented in *Technical Memorandum #5 (Existing Conditions)*.

2015 to 2040 Traffic Volume Growth

Figure 3 illustrates the regional traffic growth on links from year 2015 model scenario to the year 2035 scenario during an average weekday of the year in the PM peak hour. The figure indicates that much of the link growth is primarily expected to occur on major regional gateways to the city – US 101 south, US 101 north (Youngs Bay Bridge), and US 101 Business towards the Lewis and Clark Bridge and the Old Youngs Bay Bridge. Figure 4 indicates a similar pattern of growth on regional facilities connecting to the City during the 30HV (summer peak) conditions.

Post processed turn movement volumes at study intersections are provided in Figure 6 for the 2040 average weekday PM peak hour and Figure 7 for the 2040 30 HV (summer peak) scenario. Forecasted bi-directional traffic volumes along US 101 would generally increase by 200 to 350 during the PM peak hour of an average weekday. This increase would generally be higher as you move south along the corridor, because the constrained capacity of the Young's Bay Bridge causes travelers to divert to the Lewis and Clark Bridge/Old Young's Bay Bridge route as congestion increases in the future. SE Ensign Lane experiences bi-directional growth of about 250-300 vehicles under average weekday PM peak conditions. Growth on other facilities is generally fewer than 150 vehicles.

Forecasted bi-directional traffic volumes along US 101 would experience larger increases during the peak season, with growth between 350 and 700 vehicles during the PM peak hour. Traffic patterns under summer conditions experience some of the same growth characteristics as the average weekday growth between 2015 and 2040: capacity constraints at the Youngs Bay Bridge and US 101/E Harbor Street intersection, and significant growth in traffic on the "southern route" of US 101 Business to the Lewis and Clark Bridge and Old Youngs Bay Bridge.

Congested Conditions

This Future Forecasting memorandum will be followed by a Future Conditions memorandum that analyzes the impact of increased demands on Warrenton's transportation system in 2040. The Future Conditions memo will include detailed intersection operations analysis to help pinpoint the highest priority bottlenecks and operations issues.

The model used for the forecasts presented in this memorandum also includes features that allow us to assess congestion at a high level. Each roadway link in the model has an associated traffic capacity, so a volume-to-capacity (v/c) ratio can be calculated for each link based on the assigned traffic volume in the model run. We have provided four plots in the appendix showing v/c rations for each of the four modeled scenarios (average weekday and summer for 2015 and 2035). These plots show that the most significant future bottlenecks are the Young's Bay Bridge and E Harbor Street.

Another tool available in the forecasting model is a comparison of congested conditions to theoretical free-flow conditions, where it is assumed there is unlimited capacity on the shortest routes for each trip on the network. We have included a plot at the end of the appendix that shows how traffic patterns change under 2035 summer conditions when no congestion effects are present. This plot suggests that over 300 vehicles in each direction would be using the Youngs Bay Bridge if capacity were available, rather than the "southern route." There is also significant latent demand on E Harbor Street and SW 9th Street, with significant traffic diverting to SW 18th Street and SE Ensign Lane as an alternative.

Figure 2: Regional Traffic Growth 2015-2035 (Average Weekday PM Peak Hour)

Figure 3: Regional Traffic Growth 2015-2035 (Summer Weekday PM Peak Hour)

Warrenton TSP

Figure 5 Average Weekday (2040) PM Peak Hour (4:00 - 5:00 PM) **Turning Movement Volumes**

Legend

Allowable Movement

TEV Total Entering Volume

PM Peak Hour Turning Movement Volume

Signalized Intersection

STOP Controlled Approach

Study Area Intersection

Warrenton TSP

Figure 6 Summer (2040) PM Peak Hour (4:00 - 5:00 PM) **Turning Movement Volumes**

Legend

Allowable Movement

TEV Total Entering Volume

PM Peak Hour Turning Movement Volume

Signalized Intersection

STOP Controlled Approach

Study Area Intersection

Appendix

- 2015 Average Weekday Volume-to-Capacity Ratio Plot
- 2035 Average Weekday Volume-to-Capacity Ratio Plot
- 2015 Summer Volume-to-Capacity Ratio Plot
- 2035 Summer Volume-to-Capacity Ratio Plot
- 2035 Summer Congested/Free Flow Volume Difference Plot

SECTION 7 **TECH MEMO SEVEN** FUTURE TRANSPORTATION CONDITIONS AND NEEDS

MEMORANDUM #7

DATE:	November 16, 2017
TO:	Warrenton TSP Project Management Team
FROM:	Angela Rogge, PE, David Evans and Associates, Inc. Shelly Alexander, PE, David Evans and Associates, Inc. Dana Shuff, EIT, David Evans and Associates, Inc. Natalie Warner, David Evans and Associates, Inc.
SUBJECT:	Warrenton Transportation System Plan Update Future Transportation Conditions and Needs

P14180-008

Future Baseline Conditions

This memorandum provides an assessment of the future of Warrenton's transportation system through the 2040 TSP planning horizon. Included is a summary of how future transportation needs are determined, a description of what Warrenton is expected to look like in 2040, a list of areas where investments are needed, and a summary of potential improvements to consider. In addition to vehicular deficiencies, this memorandum addresses each modal element of the system including missing links, geometric deficiencies and safety needs.

The purpose of this document is to assist the City of Warrenton in their decision making process and enable them to prioritize the most critical transportation projects. The analysis process builds upon the existing conditions, considers where the transportation system has been improved by projects with programmed funding sources (if applicable) and uses the analysis from the future forecasting task to predict where traffic volumes will continue to grow. For Warrenton, no funded projects are planned.

Employment and Household Growth

Technical Memorandum #6: Future Forecasting summarizes the expected household and employment growth forecasts in the Warrenton Area. The areas of highest employment growth are anticipated to occur surrounding SE Ensign, southeast of US 101, on both sides of US 101 near the Astoria Regional Airport and south of the New Youngs Bay Bridge, and northeast of downtown, surrounding the Skipanon River. High employment growth is expected in areas that have generally good connectivity in the existing system, but capacity improvements will likely be needed in future conditions.

Three different zones stand out when it comes to household growth. One area of the highest household growth is expected to be from SW 9th St to NW 9th St, just west of downtown Warrenton. SE Ensign Lane and the surrounding area, southeast of US 101 is another area of high anticipated household growth. The third is located northwest of downtown Warrenton, just south of the Hammond Marina. All of these identified locations are areas that currently are undeveloped or majority farmland and substantial additions and improvements to the existing transportation network will be necessary to accommodate the forecasted growth.

Increased Demand

Today, the city of Warrenton is home to over 3,400 jobs and over 2,100 households (some of the jobs are held by residents outside of Warrenton and vice versa). By 2040, the number of households and employment are both expected to increase by over 45 percent. This high rate of growth, in addition to increased port (Astoria) and tourism activity, will greatly increase demand on the transportation network through 2040.

With the level of forecasted household and employment growth, Warrenton is expected to see significantly more traffic in both evening and summer peak hour trips. The origins and destinations of these trips are expected to be located within the areas that are predicted to experience the most residential and commercial growth, as shown in *Technical Memorandum #6: Future Forecasting*.

The network used in both the summer and the average weekday forecasts for Warrenton is a future network that includes roadway projects that are expected to occur by year 2040. In Warrenton, there are no roadway capacity projects that have known funding sources or are programmed to be funded in the next 25 years. Therefore, the future baseline network geometry matches the existing (2015) network.

Future Traffic Volume Development

Future baseline traffic volume forecasts for year 2040 were developed using the Astoria-Warrenton travel demand forecasting model. Travel demand models are tools used to help predict the patterns of future commuters, school traffic, and recreational traffic. The model relies on socioeconomic data (e.g., households and employment) to determine the travel demand, and system attributes (e.g., roadway capacity, speeds, and distances) to represent the transportation supply. The long-range regional growth forecasts are consistent with current land use zoning. The detailed forecasting methodology is described in detail in *Technical Memorandum* #6: Future Forecasting, including the anticipated traffic volumes.

The highest volumes are predicted along the US 101 and OR 104 corridors. Both of these roadways provide access to both attractions within the City of Warrenton, as well as routes to the surrounding area including Astoria, southwest Washington, and the Oregon coastline. Other significant roadways within the City include E Harbor Drive, Ensign Lane, Marlin Avenue, and the Fort Stevens Highway Spur.

Operational Criteria

Transportation engineers have established various methods for measuring traffic operations of roadways and intersections. Most jurisdictions use either volume-to-capacity (v/c) ratio or level of service (LOS) to establish performance criteria. Both the LOS and v/c ratio concepts require consideration of factors that include traffic demand, capacity of the intersection or roadway, delay, frequency of interruptions in traffic flow, relative freedom for traffic maneuvers, driving comfort, convenience, and operating cost.

Volume-to-Capacity (V/C) Ratio

A comparison of traffic volume demand to intersection capacity is one method of evaluating how well an intersection is operating. This comparison is presented as a v/c ratio. A v/c ratio of less than 1.00 indicates that the volume is less than capacity. When it is closer to 0, traffic conditions are generally good, with little

congestion and low delays for most intersection movements. As the v/c ratio approaches 1.00, traffic becomes more congested and unstable, with longer delays.

Level of Service (LOS)

Level of service is also a widely recognized and accepted measure and descriptor of traffic operations. At both stop-controlled and signalized intersections, LOS is a function of control delay, which includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Six standards have been established, ranging from LOS A, where there is little or no delay, to LOS F, where there is delay of more than 50 seconds at unsignalized intersections, or more than 80 seconds at signalized intersections.

It should be noted that, although delays can sometimes be long for some movements at a stop-controlled intersection, the v/c ratio may indicate that there is adequate capacity to process the demand for that movement. Similarly at signalized intersections, some movements, particularly side street approaches or left turns onto side streets, may experience longer delays because they receive only a small portion of the green time during a signal cycle, but their v/c ratio may be relatively low. For these reasons, it is important to examine both v/c ratio and LOS when evaluating overall intersection operations. Both are reported in a later section.

Traffic Operations Analysis Procedures

All operations were evaluated using the methodology outlined in the 2000 and 2010 Highway Capacity Manuals (HCM), along with the procedures outlined in ODOT's APM. For signalized intersections, operations are reported using HCM 2000, while HCM 2010 are used for unsignalized intersections. The Synchro analysis software was selected to perform the intersection analysis since it can provide the v/c ratio and LOS output of an HCM analysis and consider the systematic interaction of the intersections with regard to queuing and delays.

Synchro is a macroscopic model based on the HCM. The Synchro model explicitly evaluates traffic operations under coordinated and uncoordinated systems of signalized and unsignalized intersections. The v/c ratios and LOS presented in this report are based on the Synchro model output. The detailed Synchro analysis worksheets are presented in Appendix A.

Future Traffic Operations

More peak hour trips on the system without capacity changes will result in more delay, higher v/c ratios and worse LOS ratings at the study area intersections. In addition to the peak hour commuting trips, Warrenton is expected to experience more tourism traffic, as well as increased congestion in neighboring communities such as Astoria. The New Youngs Bay Bridge (US 101) and the Old Youngs Bay Bridge (US 101 Business) are existing bottlenecks in the traffic that travels to and from Astoria that are expected to increase by 2040.

Warrenton's traffic trends fluctuate throughout the year due to coastal and recreational opportunities in the area. Volumes for both summer and average weekday conditions were analyzed to determine where future transportation investments may be needed to accommodate future growth.

2040 Summer Baseline

Table 1 shows the baseline 2040 summer intersection operations. The predicted tourism and daily peak traffic increases are expected to cause eight of the study area intersections to exceed mobility targets. Along the US 101 corridor, the intersections that exceed mobility targets are at E Harbor Drive, SE Neptune Drive, Marlin Drive and SE Ensign Lane. All four of these intersections are signalized and provide access to busy commercial businesses and had also failed to meet operational mobility targets under the existing conditions. Without any planned improvements to these intersections, it makes sense they would continue to worsen in the future.

The remaining four intersections that fail to meet mobility targets are stop-controlled intersections. OR 104/Ft Stevens Highway at NE Skipanon Drive/S Main Avenue is an all-way stop and exceeds the OHP v/c target of 0.95 on both the major and minor approaches. OR 104/S Main Avenue at SW 2nd Street and E Harbor Drive at Marlin Drive both are two-way stop-controlled intersections where the minor approach exceeds the OHP v/c targets. OR 104/S Main Avenue at SW 2nd Street has a higher mobility target (v/c 1.0) due to its designation in a Special Transportation Area (STA), however the high side street volumes traveling eastbound from SW 2nd Street exceed the available capacity of the single approach lane. E Harbor Drive at Young's Bay Plaza Access exceeds the LOS target on the minor approach.

At the all-way stop controlled intersection of OR 104/Ft Stevens Highway and NE Skipanon Drive/S Main Avenue, the northbound approach is the critical movement, but the westbound through/right lane is over capacity as well. Because of the number of approach lanes needed to meet operational targets, this intersection could benefit from signalization or conversion to a roundabout by 2040.

All of these seven intersections have at least one approach where the v/c is greater than 1.0. Under seasonally factored conditions, when the traffic demand exceeds the available capacity (v/c greater than 1.0) vehicles experience excessive delay and queuing. For the signalized intersections, it is also expected that vehicles may require more than one signal cycle to pass through the intersection.

2040 Average Weekday

The analysis results show that under the 2040 future baseline conditions, most of the study area intersections would meet operational targets during the average weekday PM peak period. These results are compiled in Table 2. The study intersections operate slightly better in the average weekday PM peak scenario than in the summer PM peak.

Similar to existing conditions, the signalized intersections of E Harbor Drive at US 101, US 101 at Marlin Drive and SE Ensign Lane at US 101 are expected to exceed capacity, with v/c ratios exceeding corresponding mobility targets. The operational outputs at these intersections could lead to queuing concerns as well. With each location, movements from both US 101 and the side streets are over capacity, and improvements will likely be needed on both in order to maintain compliance with the Oregon Highway Plan (OHP) mobility targets.

It is important to note that when compared to the existing conditions analysis under average weekday conditions, the intersection of US 101 at SE Neptune Drive exceeded mobility targets, but is expected to operate below the v/c target of 0.80 in the future condition. Under future conditions, traffic patterns shift slightly so that the side street volumes increase while some of the southbound movements likely choose another route to avoid congestion. Due to this change and the optimization of signal timing, the future operations of this intersection are expected to improve slightly from existing conditions.

IN	ove	mb	er	$_{20}$	1/

	Major Approach		Minor Approach		Mobility
					Target
Intersection	V/C ^{1,2}	LOS ²	V/C ^{1,2}	LOS ²	(Major / Minor) ^{3,4}
Unsignalized Intersections					
1. Pacific Dr at Ridge Rd/Lake Dr ⁵	0.18	А	0.21	А	1.0 / 0.90
2. Pacific Dr at Iredale St ⁵	0.01	А	0.06	В	1.0 / 0.95
3. OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street	0.07	А	0.18	С	0.95 / 0.95
4. OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	1.18	F	1.23	F	0.95 / 0.95
5. Warrenton-Astoria Hwy at SE Galena Ave	0.01	А	0.20	E	0.95 / 0.95
6. E Harbor Dr at Marlin Dr	0.04	А	1.32	F	0.95 / 0.90
7. E Harbor Dr at SE Neptune Dr	0.12	А	0.59	E	v/c <=0.90, LOS E
8. E Harbor Dr at Young's Bay Plaza Access	0.08	А	0.87	F	v/c <=0.90, LOS E
10. SW 2nd St/SW Gardenia Ave	0.08	А	0.18	А	v/c <=0.90, LOS E
11. OR 104/S Main Ave at SW 2nd St ⁵	0.08	А	1.12	F	1.0 / 1.0
14. NW Ridge Rd at SW 9th St	0.02	А	0.18	В	v/c <=0.90, LOS E
15. SW 9th St at OR 104/Ft Stevens Hwy	0.07	А	0.39	D	0.95 / 0.95
16. OR 104S/Ft Stevens Hwy Spur at US 101	0.03	В	0.09	D	0.80 / 0.90
17. US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US 101Bus/Marlin Dr	0.02	А	0.34	В	0.90 / 0.95
18. Delaura Beach Ln at Ridge Rd	0.03	А	0.05	В	v/c <=0.90, LOS E
19. OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave	0.16	А	0.95	F	0.95/0.95
20. SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	0.04	А	0.25	В	0.95 / 0.95
22. SE Ensign Ln at SE 19th St	0.01	А	0.63	E	v/c <=0.90, LOS E
23. SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur	0.01	A	0.39	С	0.90 / 0.90
24. US 101 at SE Dolphin Ave	0.16	В	0.94	F	0.80 / 0.95
Signalized Intersections			<u>.</u>		<u>.</u>
9. E Harbor Dr at US 101	Ove	erall	1.23	E	0.80
12. US 101 at SE Neptune Dr	Ove	erall	1.11	E	0.80
13. US 101 at Marlin Dr	Ove	erall	1.27	F	0.80
21. SE Ensign Ln at US 101	Ove	erall	1.27	F	0.80

Table 1. Future (Year 2040) PM peak Hour Traffic Operations Analysis Results – Summer

Acronyms: EB = eastbound; WB = westbound; NB = northbound; and SB = southbound. L = left; T = through; and R = right.

SHADED cells indicate the movement fails to meet applicable mobility target

1. At intersections the results are reported for the worst operating movements on major and minor approaches that must stop or yield the right of travel to other traffic flows.

2. The v/c ratios and LOS are based on the results of the macrosimulation analysis using Synchro, which cannot account for the influence of adjacent intersection operations.

3. Mobility target is reported for the critical movement; Unsignalized intersections may have two different mobility targets for the major and minor approaches (Action 1F.1, Oregon Highway Plan, 1999)

- 4. LOS mobility targets are not applied to State facilities.
- 5. Intersection part of a Special Transportation Area (STA)

Source: David Evans and Associates, Inc.

	Major Approach		Minor Approach		Mobility
					Target
Intersection	V/C ^{1,2}	LOS ²	V/C ^{1,2}	LOS ²	(Major / Minor) ^{3,4}
Unsignalized Intersections					
1. Pacific Dr at Ridge Rd/Lake Dr ⁵	0.16	А	0.16	А	1.0 / 0.90
2. Pacific Dr at Iredale St ⁵	0.01	А	0.05	В	1.0 / 0.95
3. OR 104/S Main Ave/Ft Stevens Hwy at NW 1st Street	0.05	А	0.12	В	0.95 / 0.95
4. OR 104/Ft Stevens Hwy at NE Skipanon Dr/S Main Ave	0.86	E	0.91	F	0.95 / 0.95
5. Warrenton-Astoria Hwy at SE Galena Ave	0.01	А	0.08	С	0.95 / 0.95
6. E Harbor Dr at Marlin Dr	0.03	А	0.72	E	0.95 / 0.90
7. E Harbor Dr at SE Neptune Dr	0.08	А	0.35	С	v/c <=0.90, LOS E
8. E Harbor Dr at Young's Bay Plaza Access	0.07	А	0.53	D	v/c <=0.90, LOS E
10. SW 2nd St/SW Gardenia Ave	0.05	А	0.08	A	v/c <=0.90, LOS E
11. OR 104/S Main Ave at SW 2nd St ⁵	0.06	А	0.62	E	1.0 / 1.0
14. NW Ridge Rd at SW 9th St	0.04	А	0.12	В	v/c <=0.90, LOS E
15. SW 9th St at OR 104/Ft Stevens Hwy	0.06	А	0.36	С	0.95 / 0.95
16. OR 104S/Ft Stevens Hwy Spur at US 101	0.02	В	0.04	С	0.80 / 0.90
17. US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur at US 101Bus/Marlin Dr	0.02	А	0.28	В	0.90 / 0.95
18. Delaura Beach Ln at Ridge Rd	0.02	А	0.03	В	v/c <=0.90, LOS E
19. OR 104S/Ft. Stevens Spur at OR 104/Ft. Stevens Hwy/S Main Ave	0.14	А	0.81	D	0.95/0.95
20. SW 18th St/Delaura Beach Ln at S Main Ave/Ft Stevens Hwy	0.03	А	0.15	В	0.95 / 0.95
22. SE Ensign Ln at SE 19th St	0.01	А	0.46	D	v/c <=0.90, LOS E
23. SE Ensign Ln at US 101Bus/Warrenton-Astoria Hwy/Ft Stevens Hwy Spur	0.01	А	0.34	с	0.90 / 0.90
24. US 101 at SE Dolphin Ave	0.09	А	0.43	С	0.80 / 0.95
Signalized Intersections					
9. E Harbor Dr at US 101	Ove	erall	0.89	С	0.80
12.US 101 at SE Neptune Dr	Ove	erall	0.78	С	0.80
13.US 101 at Marlin Dr	Ove	erall	0.91	D	0.80
21.SE Ensign Ln at US 101	Ove	erall	1.01	F	0.80

Table 2. Future (Year 2040) PM peak Hour Traffic Operations Analysis Results – Average Weekday

Acronyms: EB = eastbound; WB = westbound; NB = northbound; and SB = southbound. L = left; T = through; and R = right.

SHADED cells indicate the movement fails to meet applicable mobility target

1. At intersections the results are reported for the worst operating movements on major and minor approaches that must stop or yield the right of travel to other traffic flows.

2. The v/c ratios and LOS are based on the results of the macrosimulation analysis using Synchro, which cannot account for the influence of adjacent intersection operations.

3. Mobility target is reported for the critical movement; Unsignalized intersections may have two different mobility targets for the major and minor approaches (Action 1F.1, Oregon Highway Plan, 1999)

- 4. LOS mobility targets are not applied to State facilities.
- 5. Intersection part of a Special Transportation Area (STA)

Source: David Evans and Associates, Inc.

Future Estimates of Walking, Biking and Transit

While there is great interest in developing forecasting models for bicycles and pedestrians, the traditional travel demand methodology used for predicting motor vehicle activity does not easily apply to bicycle and pedestrian travel for a number of reasons including:

- Data on walking and biking is typically too small or inaccurate to develop accurate models.
- The nature of bicycle and pedestrian travel and decision-making is not well understood and tends to be much more complicated than when they are motorist travel and decision-making (i.e., motorists tend to take the shortest routes while bicycles may trade directness to avoid a hill or travel on a lower volume street).

As such, the future needs for walking, biking and transit in Warrenton were determined by reviewing major growth areas of the City and seeing how they were served by existing facilities. In addition, the areas of the City in close proximity to key destinations (such as schools, parks, transit stops, shopping and employment) that have the potential to attract significant walking and biking trips and areas with existing deficiencies were reviewed. Some key destinations with the potential to generate biking and walking trips include Warrenton Elementary and Middle School, Warrenton High School, Warrenton Community Library, Skipanon River Park and Delaura Beach. Figure 1 Community Features shows these destinations.

Safety

The crash rates at four intersections were identified as high collision locations in the existing conditions task (all along US 101 at its intersections with East Harbor Street, Neptune Drive, Marlin Drive and Ensign Lane). The following locations were identified as a high collision roadway segments (top ten percent of state highways in Oregon). All of the following roadways are owned and maintained by ODOT:

- US 101 between mile point 6.48 and 6.58: This high collision segment includes a signalized intersection with East Harbor Street, which experiences some queuing. The high percentage of crashes within this area that were rear-end collisions indicates that the traffic signal at East Harbor Street is the likely cause.
- US 101 between mile point 7.96 and 8.09: This high collision segment includes the signalized intersection with Ensign Lane. The majority of the crashes in this segment were caused by following too closely and failing to yield the right-of-way.

ODOT has identified funding for projects to improve safety along US 101 at the signalized intersections in both SPIS locations. The projects allow for signal hardware upgrades such as reflectorized backplanes (making the signals more visible), countdown pedestrian heads for all signals, and dilemma zone protection at US 101 and East Harbor Street. Dilemma zone usually consists of warning signs equipped with one or more yellow flashing beacons that instruct drivers of the upcoming traffic signal. By 2040, existing safety concerns are expected to become exacerbated by increasing population and traffic. The construction of these safety improvements by 2040 should improve conditions at these locations.

CITY OF WARRENTON | Transportation System Plan

Data Sources: ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

0 4,500 9,000 Feet **Figure 1** Community Features

Document Path: P:\D\DKSA00000004\0600INFO\GS\Maps\WarrentonTSP - TM7\Fig_01_WarrentonTSP_CommunityFeatures.mxd

Walking

Warrenton's population is expected to increase by 43-percent from 5,175 to 7,410 in 2035. This includes a 33-percent increase in retail employees, a 32-percent increase in service employees, and a 34-percent increase in education employees based on the travel demand model and zones that approximate the Warrenton urban growth boundary. Most of the household growth is projected to occur in western Warrenton in areas zoned for residential uses.

Employment growth will be concentrated mostly on the east side of the City, however there will be substantial growth in employment along the westernmost portions of the City. These are areas that are presently zoned for commercial and industrial uses.

There is not a lot of existing connectivity for pedestrians and other forms of active transportation to provide adequate connections between areas that have projected growth in the number of households and employment. Construction of networks of bicycle and pedestrian infrastructure linking areas where future household and employment growth is projected to occur would lessen strain on the existing roadway.

A pedestrian qualitative assessment for the existing conditions rated the pedestrian experience "good" on only three short sections of roadway. The vast majority of the existing roadways within the City, including roadways linking areas with projected growth in households and employment, were rated "poor" for pedestrian travel. Additional congestion on these roadways resulting from the expected growth will exacerbate the situation, especially if advisory speeds along these roadways is not reflective of pedestrian uses.

Biking

As mentioned in *Technical Memorandum* #5: *Existing Conditions*, bicycle level of traffic stress (LTS) is rated poorly (LTS 4) for bicycle traffic along the majority of roadways within the City. Similar to pedestrian needs, there is no existing lower stress bikeway linking growing residential and household areas.

Pacific Drive and Ridge Road/Harbor Drive are the only available routes linking the highest amounts of projected household growth in the north and the east of the City to areas with the highest amounts of project employment growth, which are generally concentrated on the east of the City.

Transit

Transit is accessible in downtown Warrenton; the number 10, 15 and 101 bus lines service this area and connect passengers to both northwestern Warrenton and US 101. However, public transportation does not connect directly to Warrenton High School, located along US 104 between US 104S and Southwest 18th Street, or the surrounding communities. This is limiting for individuals attempting to reach the school or southernmost residential areas by public transportation. The following are deficiencies in the current system that will continue to be a concern in the future if no changes or improvements are made:

• Limited number of bus stops with shelters and other amenities: Of the about 10 bus stops in Warrenton, few provide shelter from weather. Given the rainy climate of the Pacific Northwest Coast, additional sheltered bus stops and route schedules on signs would increase the comfort of riders and encourage new riders to take transit in the future.

- Transit service gaps and frequency: The residential areas of Warrenton south and west of downtown are outside of comfortable walking or biking distance to transit stops. Also, with bus headways of an hour or greater, transit use can be difficult.
- Transit service in growth areas: Areas of the City located in a major residential and/or employment growth area should incorporate transit amenities and ensure pedestrian and bicycle connectivity in preparation for transit service. Many Warrenton residents live greater than ¹/₄ mile walking distance from a bus stop. While biking can increase access to transit for people living in neighborhoods distant from bus stops, gaps in the existing bicycle network and a lack of bicycle parking near stops limits the attractiveness of biking to transit, which would be exacerbated by projected increases in traffic in Warrenton over time by 2040.

The availability of roadway crossing opportunities is another factor that could limit access to transit. The existing bus stops in Warrenton are not always located near an enhanced pedestrian crossing and projected increases in traffic are expected to make matters worse by 2040. Adding enhanced crossings throughout the City by 2040 would improve pedestrian access to bus stops and would increase the general pedestrian friendliness of the streets.

Freight

The only freight route through Warrenton is US 101, which serves as a Federal Truck Route. US 101 crosses over Youngs Bay and handles freight traffic to and from Astoria and the Port of Astoria. It will be important to maintain adequate road geometry to maintain ODOT's "hole in the air" along US 101 pursuant to Oregon Revised Statutes 366.215. East Harbor Drive is not designated as a freight route, but it serves large vehicles associated with traffic to and from Hammond Marina. Future improvements should also maintain adequate geometry for larger vehicles along E Harbor Drive.

Impacts to Title VI and Environmental Justice Populations

Title VI regulations are intended to prevent discrimination on the basis of race, color, national origin, sex (gender), age, disability, or socioeconomic status. By 2040, if no improvements are made, transportation options for Title VI and EJ populations will be lacking. Generally, Title VI and EJ populations benefit from increased multi-modal connections and public transit options which are current deficiencies of the Warrenton transportation system.

Alternate Mobility Targets

The OHP provides guidance for how transportation analysis and plans should be prepared, but ultimately leaves the responsibility of developing improvements and mobility standards to the plans themselves. In addition to the established mobility targets in the OHP, alternative mobility targets can be developed as part of a transportation system plan and are considered the highway system performance standards in compliance with the Transportation Planning Rule (TPR) (OAR 660-012), including applicability for actions that fall under Section -0060 of the TPR.

Through the alternatives evaluation there may be a need to discuss acceptable levels of congestion and mobility targets and how they balance the other desires of the community. In some instances, it may not be feasible or fit with the community's character to construct improvements that would essentially build the intersection out of failing to meet mobility targets. At that time, alternate mobility standards or other state facility designations (e.g., a Special Transportation Area) may be part of a community-preferred solution. Capital plans are documents identifying short-range projects that have secured funding for construction. Currently, there are no projects in Warrenton that have known funding sources or are programmed to be funded in future years. With that taken into consideration, many of the deficiencies identified in *Technical Memorandum* #5: *Existing Conditions* are expected to contribute to future deficiencies. Network connectivity and traffic operations would continue to worsen without any planned improvements/maintenance; the increased traffic volumes on the system impact not only the traffic conditions, but the comfort of bicyclist and pedestrians as well. Anticipated future deficiencies are summarized below.

- **Driving needs:** The future summer and average weekday conditions each have separate needs:
 - o Future (2040) Average Weekday PM Peak Hour
 - The US 101 signalized intersections at E Harbor Drive, Marlin Drive and SE Ensign Lane are all expected to operate at levels above their corresponding mobility targets (See Table 1 for more detail).
 - o Future (2040) Summer PM Peak Hour
 - Including the three intersections exceeding mobility targets under the average weekday conditions, four additional intersections worsen to exceed mobility targets: US 101 at SE Neptune Drive, OR 104/Ft Stevens Highway at NE Skipanon Drive/S Main Avenue, E Harbor Drive at Marline Drive and OR 104/S Main Avenue at SW 2nd Street (See Table 2 for more detail).
- Alternative Mobility Targets: Through the alternatives evaluation there may be a need to discuss acceptable levels of congestion and mobility targets (specifically along US 101 and S Main Avenue).
- Safety Needs: High collision locations were identified at 4 signalized intersections along US 101. Warrenton has two SPIS locations, both are on US 101 and each include a signalized intersection, at East Harbor Street and Ensign Lane.
- Walking and Biking Needs: Warrenton lacks existing bike and pedestrian facility networks to adequately connect neighborhoods with commercial, institutional, recreational areas, and transit stops. Future improvements could improve safety and accessibility of using active modes of transportation to get around the City.
- Transit Needs: There are a limited number of transit stops and there are gaps in service and frequency. Some neighborhoods to the south and west of downtown are not within comfortable walking distance to a transit stop. An expansion in the number of stops and buses on routes would be required to fully serve all areas of the City.
- Freight Needs: Warrenton's only Federal Truck Route is US 101. It is important that future improvements maintain the geometry required to accommodate large freight vehicles along US 101.

SECTION 8 TECH MEMOEIGHT SOLUTIONS EVALUATION

MEMORANDUM #8

SUBJECT:	Warrenton Transportation System Plan Update Draft Solutions Evaluation	P14180-008
FROM:	Angela Rogge, PE, David Evans and Associates, Inc. Shelly Alexander, PE, David Evans and Associates, Inc.	
TO:	Warrenton TSP Project Management Team	
DATE:	August 30, 2018	

The purpose of the Warrenton Transportation System Plan (TSP) Update is to determine how best to serve the future transportation needs of Warrenton residents, businesses, and visitors. The existing and future conditions analysis suggest that the TSP will incorporate multi-modal options with the vision of the community to define draft transportation system solutions that address local needs.

This memorandum presents the evaluation of projects for consideration in the Warrenton TSP Update.

Development of Solutions

The improvements and strategies identified for consideration in the TSP were developed from multiple sources:

- Review of projects in 2004 TSP Update and other Local and Regional Plans
- New Projects based on identified deficiencies and feedback from public and advisory committees
- System and Demand Management strategies

Review of Existing Plans

The review of the projects in existing plans includes:

- Projects from the 2004 Warrenton Transportation System Plan
- Projects from Other Planning Documents
 - o 2015 Clatsop County Transportation System Plan
 - o 2010 City of Warrenton Downtown and Marina Master Plans
- Projects in Capital Plans
 - o 2018-2023 Warrenton Streets Capital Improvement Program
 - o 2010-2030 Warrenton Parks Capital Improvements Plan
 - o 2018-2021 Oregon (Final as Amended) Statewide Transportation Improvement Program (STIP)

Where still relevant during the 20-year planning horizon, solutions from these plans are considered for inclusion in the TSP.

Projects from the 2004 Warrenton Transportation System Plan

The 2004 Warrenton TSP was reviewed to determine which projects were still relevant to the TSP Update. Table 1 summarizes the applicable projects as described in the 2004 Warrenton TSP, facility jurisdiction, project type, and potential reasons for why the project may be needed.

Table 1. Applicable Projects from the 2004 Warrenton TSP

	Project					
ID	Description ¹	Jurisdiction	Type	Need		
	Street					
1	Add westbound left-turn lane at the intersection of East Harbor Dr with SE Marlin Ave (Warrenton- Astoria Hwy 105). Realign SE Marlin Ave approach and signalize intersection.	ODOT	Capacity	Vehicular traffic volumes in summer exceed ODOT mobility target		
2	Signalize intersection of Fort Stevens Hwy 104 and Warrenton-Astoria Hwy 105. Reconfigure intersection to accommodate trucks and improve pedestrian crossings. * this intersection was changed in 2005 (some movements restricted) but further improvements are needed (included as a proposed project BP4 and R17)	ODOT	Traffic Signal; Freight	Vehicular traffic volumes in summer exceed ODOT mobility target		
3	Add right-turn lanes on SE Marlin Ave (Warrenton- Astoria Hwy 105) approaches at intersection with US 101 * this intersection was changed in 2005 (alignment changed and lights added) but further improvements are needed (included as a proposed project R22)	ODOT	Capacity	Vehicular traffic volumes exceed ODOT mobility target year-round		
4	Construct shoulder widening on both sides of Fort Stevens Hwy 104 (Main Ave) – 14 th St to South of Spur	ODOT	Street Upgrade	Provide paved travel way for High School pedestrian access		
5	E Harbor Dr at SE Neptune Ave: Signalize intersection	ODOT/ City	Traffic Signal	Pair with potential access control at Pacific Ave/Young's Bay Plaza		
6	Delaura Beach Lane and Ridge Rd - intersection geometry	County/ City	Intersection Modification; Safety	Safety		
7	Extend SW 2nd St to connect with SW Juniper Ave – Elm Ave to Juniper Ave * <i>Partially completed</i>	City	New Road	Connectivity		
8	Connect NW/SW Juniper Ave with Ridge Rd – SW 9 th St to Ridge Rd	City	New Road	Connectivity		
9	Construct curb, sidewalk and new local roadway along private Dr (SE 7th St) from Hwy 104 (Main Ave) to SE Marlin Ave. Includes a bridge crossing over the Skipanon Slough (connectivity project)	Private	New Road	Connectivity		
10	Widen New Youngs Bay Bridge to 4-lane Section (Warrenton to Astoria)	ODOT	Bridge	Regional capacity and connectivity		
11	Additional turn lanes at the Harbor St - US 101 intersection (Additional Eastbound left turn lane,	ODOT	Capacity	Vehicular traffic volumes exceed ODOT mobility target year-round		

		Project				
ID	Description ¹	Jurisdiction	Type	Need		
	northbound through lane, and southbound through lane)					
12	Widen Warrenton-Astoria Hwy 105 (SE Marlin Ave) to include sidewalk and bike lanes – Harbor Dr to US 101	ODOT	Bicycle; Pedestrian	Multi-modal connectivity		
13	Fort Stevens Hwy 104: Add bike lanes	ODOT	Bicycle	Multi-modal connectivity through downtown		
14	Fort Stevens Hwy 104: Install curb and sidewalks both sides	ODOT	Pedestrian	Multi-modal connectivity through downtown		
	Bicycle/Pedestrian					
15	New Youngs Bay Bridge: Pedestrian/bicycle improvements	ODOT	Bicycle	Regional multi-modal connectivity: Install additional bike detection for cyclists traveling along the bridge (County TSP)		
16	Improve pedestrian crossing at intersection of Fort Stevens Hwy 104, Warrenton-Astoria Hwy 105 (E Harbor Dr) and Skipanon Dr/Main Ave	ODOT	Pedestrian; Intersection Modification	Safety		
17	Fort Stevens Hwy 104: Add crosswalk for better pedestrian access to elementary school at SW 9th St	ODOT	Pedestrian	Multi-modal connectivity; safety		
18	Fort Stevens Hwy 104 Spur: Construct curb and sidewalk	ODOT	Pedestrian	Multi-modal connectivity		
19	Warrenton-Astoria Hwy 105 (E Harbor): Install curb and sidewalks both sides of the road – Fort Stevens Hwy 104 (Main Ave) to Marlin Ave	ODOT	Pedestrian	Multi-modal connectivity		
20	SW 9th St: Upgrade width with bike lanes and sidewalks – SW 9th St to Ridge Rd	City	Pedestrian	School access and multi- modal connectivity		
21	SW Alder Ave: Install marked crosswalks near community center/park	City	Pedestrian	School access; safety		
22	SW Cedar Ave/SW 7th St: Upgrade crosswalks to be ADA-compliant at Warrenton Elementary School	City	Pedestrian	School access; safety		
23	East Harbor Dr: Add curb and sidewalk – Marlin Ave to US 101	ODOT	Pedestrian	Multi-modal connectivity		
24	SE Neptune Ave: Add sidewalks and bike lanes – Harbor Dr to US 101	City	Pedestrian	Multi-modal connectivity		
25	Ridge Rd: Install sidewalks from SW 9th St north along soccer fields	County	Pedestrian	Multi-modal connectivity; safety		
26	Improved signage, visibility for Warrenton Waterfront trail	City	Trail	Safety		
27	Warrenton Waterfront Trail: Improved pedestrian amenities including restrooms, lighting, trash receptacles	City	Trail	Safety; aesthetics		
28	Pave top of dike near Airport (Airport Dike Trail)	City	Trail	Mobility		

			Project	
ID	Description ¹	Jurisdiction	Type	Need
29	Fort Stevens Hwy 104 Spur: Stripe 6-foot-wide bike lanes on both sides of Rd (includes minor widening)	ODOT	Bicycle	Multi-modal connectivity
30	Warrenton-Astoria Hwy 105: Add bicycle route designation signage	ODOT	Wayfinding	Visibility
31	Multi-use path to connect Hammond with Fort Stevens State Park	ODOT/ City	Trail	Multi-modal connectivity
32	Install Bike Parking	City	Bicycle	Multi-modal connectivity
33	Extend multi-use path through Fort Stevens State Park along Burma Rd to Delaura Beach Rd	City	Trail	Multi-modal connectivity
	Transit		-	<u>.</u>
34	US 101 North and South of the New Youngs Bay Bridge - install shelters and kiosks	ODOT/ County/City	Transit Amenities	Support regional plan
35	Investigate the possibility of intercity bus service that connects downtown Warrenton with the commercial area and KOA/Fort Stevens State Park		Transit Service	Completed. Remove from potential projects.
36	Identify ways to improve transit service between Cannon Beach and Astoria and between Astoria and Warrenton shopping areas.		Transit Service	Completed. Remove from potential projects.
37	Provide transit amenities (covered shelters, signage, pullouts)		Transit Amenities	Increase multi-modal facilities
38	Extend hours, decrease headway, review scheduling, improve efficiency of dial-a-ride program, meet the needs of future demands, improve connections, and advertise and promote services. In addition, transit amenities are lacking in certain areas.		Transit Service	Multi-modal connectivity
39	ADA compliance		Transit Amenities	Mobility
	Other (Bridge, Air, Water)		<u>.</u>	<u>^</u>
40	Bridge with sufficiency rating less than 45. Skipanon River Br. No. 1400	ODOT	Bridge	2011: Weight Restricted 2017: Structurally Deficient
41	Improve runway surface at Astoria Regional Airport		Air	Maintenance
42	Improve runway safety areas		Air	Maintenance
43	Improve existing water facilities		Water; recreation	Recreational and economic opportunity

Projects from Other Planning Documents

Two other planning documents were reviewed to identify projects related to the transportation system in Warrenton.

2015 Clatsop County Transportation System Plan

The Clatsop County TSP guides development of County roadways and multi-modal facilities throughout Clatsop County. The Clatsop County TSP recommends a couple new transportation projects within Warrenton city limits. Table 2 summarizes the projects, jurisdiction, and notes regarding timing (short or long-term) and funding priority (financially constrained or aspirational).¹

Table 2. Applicable Projects from the 2015 Clatsop County TSP

ID	Description	Jurisdiction	Notes
W3	Warrenton to Miles Crossing – Study for an off-highway shared- use path. Study will determine potential alignments, width, security, wayfinding details, construction materials, costs, and funding sources	County	Financially Constrained – Short Term
W4	SE 19th St from SE Ensign Ln to Animal Shelter Near SE Willow Dr. – Extends shared-use path to connect with SE Ensign Ln. The animal shelter is a popular destination to walk to that is just off the pedestrian network.	County/ Warrenton	Aspirational – Long Term
B23	New Young's Bay Bridge – Install additional bike detection for cyclists traveling along the bridge.	State	Financially Constrained – Long Term
D13	Warrenton-Astoria Hwy. (US 101B)/Fort Clatsop Rd. – Addition of westbound right turn deceleration lane on Warrenton-Astoria Hwy. (US 101B) and southbound left turn lane on SE Airport Ln.	State	Aspirational – Long Term
D14	Develop roadway network to serve area south of North Coast Business Park. Extend 19th St. (or other alignment) to provide access to Ensign Ln. Coordinate with Warrenton	County/ Warrenton	Financially Constrained – Short Term; Consistent with STIP

2010 City of Warrenton Downtown and Marina Master Plan

The Warrenton Downtown and Marina Master Plans document contains goals developed for downtown Warrenton and the adjacent Warrenton marina, including design guidelines for both districts. The five key principles for improving the downtown area are to:

- focus on the natural setting;
- connect to the waterfront;
- improve bicycle and pedestrian circulation;
- create a green downtown; and
- have the City lead by example.

¹ Financially constrained projects from the 2015 Clatsop County TSP have a reasonable expectation of being funded by 2035. Aspirational projects have no identified funding source.

Table 3 lists the transportation-related projects, facility jurisdiction, and notes indicating consistency with other planning documents.

Table 3. Applicable Projects from the 2010 City of Warrenton Downtown and Marina Master Plan

Description	Jurisdiction	Notes
Improve Harbor Dr – add street trees, lighting, sidewalks, crosswalks, and bike lanes	ODOT	Bicycle/Pedestrian improvements consistent with 2004 TSP
Improve pedestrian facilities on Skipanon River Bridge	ODOT	Consistent with 2004 TSP
Harbor Dr/Fort Stevens Hwy 104 (Main Ave) Improvements – consider installing wider sidewalks, street trees, new lighting, new crosswalks, and curb extensions when improving this intersection	ODOT/ City	Pedestrian improvements consistent with 2004 TSP
Install wider sidewalks on Fort Stevens Hwy 104 (Main Ave); narrow the travel lanes and parking stalls. Consider adding curb extensions at crosswalks and street trees	ODOT/ City	Supports improvements in 2004 TSP
Strengthen street grid by extending existing streets to areas of future redevelopment	City	Consistent with 2004 TSP, 2018- 2021 STIP, new projects
Expand and enhance Skipanon Trail	City	Consistent with 2004 TSP, 2018- 2021 STIP, new projects
Plan truck routing to discourage trucks from driving through downtown	ODOT/ City	Consistent with 2004 TSP, new projects

Projects in Capital Plans

Capital plans are documents identifying short-range projects that have secured funding for construction.

Warrenton Streets Capital Improvement Program

The project list for the 2018-2023 Warrenton Streets Capital Improvement Program (CIP), the most recent CIP, contains projects for the 5-year planning horizon. The projects listed in the CIP will be evaluated in addition to other potential improvements proposed in this memorandum, with lower priority given to projects outside of the city limits. See Table 4 for a summary of the project list and estimated costs in 2017 dollars. As indicated in the notes column, some of the CIP projects are consistent with, or support, projects listed in the 2004 Warrenton TSP.

Table 4. Warrenton Streets Capital Improvement Program

Desis et Manas	Project Cost Estimate ¹		Consistency with 2004
Project Name	Funded	Uniunded	warrenton 15P
SE Anchor (Harbor – SE 3 rd St) Improvements	\$210,000		
SW 4th St (S Main Ave – SW Alder Ct)	\$118,000		Supports 2004 TSP
N Main Ave and NW 7th Pl (NW Warrenton Dr to NE 5th St)	\$367,000		
SE 2 nd St (SE King – Marlin)	\$225,000		
Streets SDC Improvements – Unallocated	\$742,400		
SW 2 nd St (Elm – Gardenia)	\$48,000	\$267,000	Consistent with 2004 TSP
SW Alder Ave Reconstruction Project (SW 1st - SW 3rd)		\$185,000	
NW 13th St and Warrenton Dr Trail & Drainage Improvements		\$73,000	Consistent with 2004 TSP

	Project Cost Estimate ¹		Consistency with 2004
Project Name	Funded	Unfunded	Warrenton TSP
SE Main Ct (9th – 11th) Improvement Project		\$107,000	
SE 2 nd St Improvement Project (Main – Skipanon River Park)		\$281,000	
S Main Ave and SW 14th Pl (Orchard Subdivision) Sidewalks		\$16,000	
Total:	\$1,710,400	\$929,000	

Source: City of Warrenton 2018-2023 Capital Improvement Program (June 27, 2017)

1. Project Cost Estimates provided by City of Warrenton in 2017 dollars

2010-2030 Warrenton Parks Capital Improvements Plan

A component of the Warrenton Parks Master Plan is the Capital Improvement Plan, which is intended to guide development of the parks system for the 20-year period between 2010 and 2030 and includes park improvements, land acquisition, and development. The projects listed in the plan are sorted by prioritization categories. Some of the projects are currently included in other planning documents. Table 5 lists the applicable transportation-related projects, estimated costs in 2010 dollars, and priority level (I or II).

Table 5. Applicable Projects from the 2010-2030 Warrenton Parks Capital Improvements Plan

ID	Description	Cost (2010 \$)	Notes
CIP-3	Quincy & Bessie Robinson Community Park Signage	\$1,000	Priority I
CIP-4	Seafarers Park Trail Connection to Fort Stevens	\$158,400	Priority II
CIP-5	Eben H. Carruthers Park Signage	\$1,000	Priority I
CIP-5	Eben H. Carruthers Park Interior Walking Paths	\$36,000	Priority I
CIP-7	Skipanon River Park Interpretive Signage	\$2,000	Priority I
CIP-7	Skipanon River Park Improve Kayak Dock ADA Accessibility Route	\$5,000	Priority I
CIP-7	Skipanon River Park Trail Connection (east Harbor Bridge)	\$39,600	Priority I
CIP-7	Skipanon River Park Parking Improvements	\$64,500	Priority II
CIP-8	Community Library Park ADA Accessibility Improvements (Rubber Chips)	\$9,000	Priority II
CIP-9	Pacific Drive Park Trail Connections/Access	\$39,600	Priority I
CIP-10	Warrenton LCYSA Soccer Field Trail Connections/Access	\$158,400	Priority I
CIP-12	Triangle Park Signage	\$1,000	Priority I
CIP-13	Tansy Point Interpretive Signage	\$2,000	Priority I
CIP-13	Tansy Point Parking Improvements	\$41,250	Priority II

2018-2021 Oregon (Final as Amended) Statewide Transportation Improvement Program

The 2018-2021 STIP contains two projects in the City of Warrenton. The projects are:

- US101B: Lewis and Clark River Bridge (Warrenton): Replace deck (includes deck removal); Key 20107²
- SE Ensign Lane SE 19th St (Warrenton): Construct connector road between SE Ensign Lane and SE 19th Street; Key 21149

The deck replacement includes funds for preliminary engineering (2019) and construction (2021), while the new connector road is for construction only (2018).

New Transportation Projects for Consideration

The alternatives evaluation considers new roadway, bicycle and pedestrian, and transit projects that could be incorporated into the TSP Update.

New Street Alternatives for Consideration

Many of the street improvement projects in the 2004 TSP are recommended to be considered for inclusion the TSP Update. In addition, there are a few potential new roadway projects for consideration and these projects are described below in Table 6.

ID Description Jurisdiction Source Notes S-1 Add STOP-control at intersection of SE 9th at Stakeholders City Anchor S-2 Truck route and improvements to access Skipanon ODOT/ Stakeholders **Options:** Dr from 5th St City • New industrial crosssection • Signing/Striping S-3 Dedicated southbound left turn lane on OR 104 ODOT Stakeholders Spur at Ensign Ln S-4 Flashing vellow arrows (northbound and ODOT Traffic Options: southbound permitted lefts) on US 101 Operations; • Marlin Stakeholders • Neptune • Harbor S-5 Traffic and safety improvements at Premarq Center ODOT/ Should be coordinated with Safety: accesses (Access control) Stakeholders any potential improvement Private at US 101/Harbor S-6 Extend SE 19th St north (connectivity project) Stakeholders: Options: City STIP • Connect to SE Jetty Ave • Connect to SE King Ave

Table 6. Potential New Street Solutions for Consideration

² Key numbers are unique project identification numbers specific to the STIP

New Bicycle & Pedestrian Alternatives for Consideration

Many of the 2004 TSP projects recommended to be considered for inclusion in the TSP Update include bicycle and pedestrian improvements. Additional projects for consideration are described below in Table 7.

ID	Description	Jurisdiction	Source	Notes
BP- 1	Provide bicycle and pedestrian improvements at the OR 104S bridge over the Skipanon River	ODOT	Stakeholders; Existing deficiency	 Options: Widen and potentially raise Cantilevered path
BP- 2	Pedestrian improvements on Pacific Dr	ODOT/ City	Stakeholders; Existing deficiency	Options: • Sidewalks • Multiuse path • 6th St as alternate route
BP- 3	Trail on KOA access/NW 11th alignment	Private	Stakeholders	
BP- 4	Improve pedestrian safety near soccer fields	County	Stakeholders; Safety	Consider crossing treatment options of Ridge Rd
BP- 5	Construct/extend sidewalks on SE 19th	City/County	Existing deficiency	
BP- 6	Trail crossing for Airport Dike Trail at US 101 by routing pedestrians to Harbor St (wayfinding/path connection)	ODOT/ City	Stakeholders	
BP- 7	Construct sidewalk on south side of Ensign Ln (For Stevens Hwy 104 Spur to US 101)	City	Existing deficiency	

Table 7. Potential New Bicycle & Pedestrian Solutions for Consideration

System and Demand Management Options

Safe Routes to Schools (SRTS)

The existing conditions analysis (Technical Memorandum #5) identified a deficiency in safe, walkable connections around area schools. Students wanting to walk or bike to school would have to cross at least one major highway (Fort Stevens Hwy 104, named Main Avenue in the city) on routes that have limited pedestrian facilities and are adjacent to high volumes of traffic.

SRTS is a program that a school district can adopt to encourage people to walk and bike to school and identifies safe, convenient, and fun opportunities to do so. The TSP can support SRTS by focusing on and prioritizing enhancements of pedestrian and bicycle connections to schools.

Table 9 specifies whether a project supports bicycle and pedestrian connections to schools. Focus should be given to those projects that also enhance safety, such as a multi-use path that separates pedestrians from vehicular traffic.

Transportation System Management (TSM)

TSM measures are designed to make maximum use of existing transportation facilities. Efficient management of the transportation system can reduce costs by avoiding the need for more expensive roadway expansion projects. TSM strategies include traffic control improvements, traffic signal coordination, traffic calming, access management, local street connectivity, and intelligent transportation systems (ITS).

Traffic Calming: Uses physical design and other measures to improve safety for motorists, pedestrians and cyclists. It aims to encourage safer, more responsible driving and potentially reduce traffic flow. Examples: bike boulevard/neighborhood greenway, neighborhood traffic circle, curb bulb-outs (roadway narrowing), and raised crosswalks/medians.

Access Management: Includes the management of vehicular access points to enhance safety and potentially improve traffic operations. Examples: access and driveway spacing standards, channelized turn lanes, median treatments, and turn restrictions

ITS: Includes collecting and conveying information regarding roadway operations to improve the operations and efficiency of a facility. Examples: variable message signs, adaptive signal timing, and variable speed limit signs.

Table 9 includes several projects that support TSM, such as improved bicycle wayfinding, access management, midblock crossings, neighborhood greenway (bicycle sharrows) and high visibility crosswalks.

Transportation Demand Management (TDM)

Transportation Demand Management (TDM) measures are designed to reduce vehicle demand, especially for commuter trips in the peak periods. TDM measures encourage the use of alternative, non-single-occupancy-vehicle travel modes by serving as a model for businesses and institutions in the community. Though the existing and future traffic analysis do not indicate significant roadway capacity concerns on the local system, implementing TDM measures support the goals of the TSP to plan and design a transportation system that enhances livability, supports positive health impacts, and decreases reliance on the automobile.

TDM measures that could be applicable for Warrenton include:

- Improved street connectivity
- Investing in pedestrian/bicycle facilities and amenities
- Improved amenities and access for transit stops
- Trip reduction strategies (e.g. employer based: telecommuting, rideshare, transit allowance)
- Enhanced transit facilities
- Disincentives for use of single occupancy vehicles (e.g. parking management/pricing, carpool spaces)

Table 9 includes several projects that support TDM, such as increased and improved bicycle, pedestrian and transit amenities.

Solutions Evaluation

Ranking Based on Evaluation Criteria

A broad set of evaluation criteria that represent the proposed set of goals for the Warrenton TSP Update were used to evaluate proposed projects and alternatives. The evaluation criteria, listed below, were developed directly from the

project goals and objectives outlined in Technical Memorandum #4 and are intended to indicate how strongly each solution or project supports community-expressed interests.

Goal 1: Health – Develop a transportation system that maintains and improves individual health by maximizing active transportation options.

Evaluation Criteria

- a. Increases active transportation options
- b. Increases recreational opportunities

Goal 2: Safety – Develop a transportation system that maintains and improves public safety and effectively manages evacuations and emergency response preceding and following natural disasters.

Evaluation Criteria

- a. Improves road and railroad crossing safety for all modes
- b. Increases ADA compliant sidewalks and intersection curb ramps
- c. Improves public safety
- d. Improves route connectivity
- e. Decreases access point along highways and major arterials
- f. Improves response times/evacuation efficiency

Goal 3: Travel Choices – Develop and maintain a well-connected transportation system that offers travel choices, reduces travel distance, improves reliability, and manages congestion for all modes.

Evaluation Criteria

- a. Improves roadway operations
- b. Improves bus travel time reliability
- c. Improves bus service for local employees
- d. Improves bus service for employees commuting to nearby coastal destinations
- e. Increases connectivity across and between all modes
- f. Improves pedestrian/bicycle access to key destinations, including transit service

Goal 4: Economic Vitality – Support the development and revitalization efforts of the City, Region, and State economies and create a climate that encourages growth of existing and new businesses.

Evaluation Criteria

- a. Minimizes negative impacts to existing land uses (built environment)
- b. Improves parking efficiency
- c. Improves freight access/connectivity
- d. Improves bicycle and pedestrian access to the downtown area
- e. Increases capacity for boating and shipping activities

Goal 5: Livability – Customize transportation solutions to suit the local context while providing a system that supports active transportation, promotes public health, facilitates access to daily needs and services, and enhances the livability of Warrenton neighborhoods and business community.

Evaluation Criteria

- a. Reduces/discourages through travel in residential neighborhoods
- b. Increases connections/access to community amenities

- c. Enhances street aesthetics
- d. Reduces impacts from trucks downtown

Goal 6: Sustainability – Provide a sustainable transportation system that meets the needs of present and future generations and is environmentally, fiscally and socially sustainable.

Evaluation Criteria

- a. Avoids negative impacts to environmentally sensitive areas
- b. Reduces vehicle miles traveled
- c. Minimizes impacts to historic sites
- d. Increases alternatives to single-occupant vehicle travel

Goal 7: Fiscal Responsibility – Plan for and implement an economically viable transportation system that protects and improves existing transportation assets while cost-effectively enhancing the total system.

Evaluation Criteria

- a. Increases the efficiency of existing facilities without expanding or building new facilities
- b. Provides significant increase in mobility/accessibility

Goal 8: Compatibility – Develop a transportation system that is consistent with the City's Comprehensive Plan and that is coordinated with County, State, and Regional plans.

Evaluation Criteria

a. Supports and is consistent with adopted planning documents

For projects that are being considered for inclusion in the TSP update, a qualitative and quantitative scale was used to evaluate them against each goal's evaluation criteria. Table 8 presents an example of how a goal's evaluation criteria would be used to score a proposed project.

Table 8. Example Evaluation Criteria Scoring

Goal: Safety				
	+2	Project has negative public safety impact to all modes		
Evaluation Criteria:	+1	roject has negative public safety impact to at least one mode		
Criteria 2.c.	0	No net impact / not applicable		
safety	-1	Project has positive public safety impact at least one mode		
	-2	Project has positive public safety impact to all modes		

Each goal's score was averaged and the average of all eight goals, with goals being evenly weighted, represents the score for each project. See Attachment A for the complete set of scoring results.

In order to further differentiate projects that received the same primary evaluation score within a given mode, sets of secondary criteria were applied. These project scores were converted into High, Medium, and Low Priority groupings. Higher priority was assigned to projects that improve the existing system without adding capacity, while lower priority was assigned to projects that increased capacity without adding connectivity or improvements to active transportation, which aligns with the directive provided in the project scope.

Planning Level Cost Estimates

Planning level cost estimates were developed for each potential TSP project. The cost estimates are based on assumptions about project extents, materials and desired components. Generalized unit costs and contingency factors (mobilization, traffic control, and engineering/design) were applied to the project elements to calculate total cost.

The unit costs are based on professional experience, reference documents from ODOT, and other transportation planning resources. These values are intended to provide an order of magnitude look at project costs and do not include right of way acquisition, utilities relocation, and potential hazardous materials issues.

Project Prioritization

Since the advancement of any project is contingent upon the availability of future funding, it is important to establish a flexible program of prioritized projects that meet diverse stakeholders needs while leveraging current and future funding opportunities. Ultimately, the refined, prioritized list is intended to serve as a menu of projects, with multiple factors that can be used together to assess the highest priority projects that can be completed within the available budget.

The proposed bicycle and pedestrian improvements are mapped in Figure 1 and the proposed roadway projects are mapped in Figure 2. Transit, air and rail projects are not mapped because their locations are not defined. Table 9 organizes all the potential projects by mode and priority, based on the evaluation criteria listed in the previous section.

The initial draft Solutions Evaluation Memorandum is intended to be part of an interactive process to develop a menu of potential improvements prioritized into financially constrained and aspirational project lists. Additional stakeholder feedback, funding forecasts, and fatal flaw analysis will help to refine the list presented in Table 9. The refined list will eventually be included in the draft TSP.

CITY OF WARRENTON | Transportation System Plan

Data Sources: ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Figure 1

Proposed Bicycle & Pedestrian Improvements

Document Path: P:\D\DKSA0000004\0600INFO\GS\Maps\Warrenton_TSP.aprx

CITY OF WARRENTON | Transportation System Plan

Data Sources:

ESRI, ArcGIS Online, World Topography Map. 2015. City of Warrenton, Oregon. 2015. Clatsop County, Oregon. 2015.

Figure 2 Proposed Roadway Improvements

Table 9. Draft Prioritized Project List (by mode)

				Cost		
				(2018		
ID	Project Type	Location	Priority	dollars)	Source	Jurisdiction
	Bicycle/Pedestrian					
BP1	Trail (Wayfinding)	Warrenton Waterfront Trail	High	\$50,000	2004 Warrenton TSP	Warrenton
	Improve wayfinding s network to help guide	ignage and visibility of Warre bicyclists to and from local o	enton Waterfror destinations via	nt Trail. Provide a bike routes and t	bicycle wayfind rails.	ing signage
BP2	Trail (Wayfinding)	Airport Dike Trail: US 101 at Harbor Dr	High	\$35,000- \$133,000	New; Stakeholders	Warrenton /ODOT
	Extend the Airport Designal (and existing pe of US 101 and a new at- Engineer approval.	ike Trail south from its curre destrian crossing) at US 101 grade crossing is unlikely to meet	ent terminus on at Harbor Stree the requirements of	the east side of U t. <i>The current Airpo</i> f an engineering stud	S 101 to the exis ort Dike Trail has y or obtain State T	sting traffic <i>no formal crossing</i> Traffic-Roadway
BP3	Bicycle (Parking)	Parks, downtown, soccer complex	High	\$1,000/ea. \$5000 total	2004 Warrenton TSP	Warrenton
	Install bicycle parking Complex.	at points of interest, such as	downtown War	rrenton, the City	Park and the Wa	rrenton Soccer
BP4	Pedestrian (Crossing)	Fort Stevens Hwy 104, Warrenton-Astoria Hwy 105 (E Harbor Dr) and Skipanon Dr/Main Ave	High	\$100,000	2004 Warrenton TSP	ODOT
	Upgrade the pedestria Skipanon Dr/Main Av	n crossing at Fort Stevens H ve to current standards.	wy 104, Warren	ton-Astoria Hwy	105 (E Harbor I	Dr) and
BP5	Pedestrian (Multi- Use path); Safety	Ridge Rd: SW 9th St north along soccer fields	High	\$200,000	2004 Warrenton TSP; Stakeholders	County/ Warrenton
	Construct a 10-foot w Warrenton Soccer Con	ide multi-use path on the eas mplex.	st side of Ridge	Road from SW 91	h Street to the r	orth edge of the
BP6	Pedestrian (Crossing); Safety	Soccer fields and across/along Ridge Rd	High	\$20, 000	New; Stakeholders	County
	Construct an at-grade and advanced signage.	pedestrian crossing of Ridge	Road at the Wa	arrenton Soccer (Complex with his	gh visibility paint
BP7	Bicycle and Pedestrian (Connectivity)	Pacific Dr (Hammond)	High	Option A: \$50,000 Option B: \$3.3 million	New; Stakeholders	ODOT/ Warrenton

				Cost Opinion (2018					
ID	Project Type	Location	Priority	dollars)	Source	Jurisdiction			
	Enhance bicycle connectivity in Hammond. Option A: Install wayfinding and sharrows on parallel routes (6 th and 7 th) through Hammond and provide high visibility crosswalk across Pacific Drive. Option B: Construct curb, gutter and sidewalks on Pacific Drive through Hammond								
BP8	Bicycle (Wayfinding)	Warrenton-Astoria Hwy 105	High	\$25, 000	2004 Warrenton TSP	ODOT/ Warrenton			
	Add bicycle route desi	gnation signage for length of	f Warrenton-As	toria Hwy 105 wi	thin Warrenton	city limits.			
BP9	Pedestrian (Crossing); Safety	Fort Stevens Hwy 104 (Main Ave) at SW 9th St	High	\$2,000	2004 Warrenton TSP; Stakeholders	ODOT/ Warrenton			
	Study potential highwa 9th Street to enhance	ay crossing enhancements at visibility of crossing near elem	the intersection mentary school.	of Fort Stevens l	Hwy 104 (Main	Avenue) at SW			
BP10	Pedestrian (Crossing); Safety; Modernization	SW Cedar Ave at SW 7th St	High	\$40,000	2004 Warrenton TSP	Warrenton			
	Upgrade curb and cros	sswalks to be ADA-compliar	nt at Warrenton	Elementary Scho	ol.				
BP11	Pedestrian (Crossing); Safety	SW Alder Ave at SW 3rd St and SW 4th St	High	\$30,000	2004 Warrenton TSP	Warrenton			
	New marked crosswal of new curb.	ks near community center/p	ark. The crossin	ngs at SW 4th Stre	eet would also re	equire installation			
BP12	Bicycle (Visibility); Safety	New Youngs Bay Bridge	High	\$500,000 (Clatsop County TSP estimate)	2004 Warrenton TSP; 2015 Clatsop County TSP	ODOT			
	Enhance bicycle visibi along the bridge.	lity on New Youngs Bay Brid	dge and install a	dditional bike det	tection for cyclis	sts traveling			
BP13	Trail (Connectivity)	KOA access/NW 11th alignment	Medium	\$2.7 million	New	Private/ Warrenton			
	Construct a new trail connection from the KOA access east to NW Warrenton Drive following the NW 11th Street alignment. Includes excavation and embankment.								
BP14	Bicycle (Connectivity)	Fort Stevens Hwy 104: Harbor Dr to 9th St	Medium	Option A: \$30,000 Option B: \$695,000	2004 Warrenton TSP	ODOT			
	Install bicycle facilities Option A: Install shar Option B: Remove pa	along Fort Stevens Hwy 104 rows and "share the road" sig rking on one side of the road	4 (Main Avenue gnage h and widening): where needed to	provide striped	bicycle facilities			

				Cost Opinion		
ID	Project Type	Location	Priority	(2018 dollars)	Source	Jurisdiction
BP15	Pedestrian (Connectivity)	SE 19th: Ensign Ln to Chokeberry Ave	Medium	\$1.6 million	New	Warrenton
	Construct sidewalks or gutter on the north/ea	n both sides of SE 19th Stree ist side of the road and exten	t south of Ensig ds the sidewalk	gn Lane. Project in on the south/we	ncludes new side st side of the ro	ewalk, curb and ad.
BP16	Pedestrian (Multi- Use path)	Hammond to Fort Stevens State Park	Medium	\$600,000	2004 Warrenton TSP	State Parks/ County/ Warrenton
	Construct a 10-foot ware entrance.	ide multi-use path on one sic	le of Pacific Dri	ve from Lake Dr	ive to Fort Stev	ens State Park
BP17	Pedestrian (Connectivity); Safety	SW 9th St: SW 9th St to Ridge Rd	Medium	Phase 1: \$480,000 Phase 2: \$680,000	2004 Warrenton TSP	Warrenton
	Provide enhanced bicy Option A: Widen side Option B: Multiuse pa	vcle and pedestrian connectiv walk to 10 feet on north side th (Cedar Dr to Ridge Rd)	ity along SW 9 th	^h Street.		
BP18	Bicycle (Connectivity); Safety	Fort Stevens Hwy 104 Spur	Medium	\$10,000	2004 Warrenton TSP	ODOT
	Study potential bicycle indicate bicyclists are p	e striping enhancements on b present.	oth sides of the	road for length o	of Fort Stevens I	Hwy 104 Spur to
BP19	Pedestrian (Connectivity)	Fort Stevens Hwy 104: SW 3 rd St to SE 9 th St	Medium	\$1.4 million	2004 Warrenton TSP	ODOT
	Construct curb, gutter Street.	and sidewalks on the east side	de of Fort Steve	ns Hwy 104 betw	veen SW 3 rd Stre	et and SE 9 th
BP20	Bicycle and Pedestrian (Connectivity)	Warrenton-Astoria Hwy 105 (SE Marlin Ave): Harbor Dr to SE 6th St	Medium	\$1.5 million	2004 Warrenton TSP	ODOT
	Construct bicycle lane SE 6 th Street.	s, curb, gutter and sidewalks	on both sides o	f SE Marlin Aven	ue between Ha	bor Drive and
BP21	Pedestrian (Connectivity)	Fort Stevens Hwy 104 Spur	Medium	Phase 1: \$1.4 million Phase 2: \$1.9 million	2004 Warrenton TSP	ODOT
	Construct curb, gutter Phase 1: Hwy 104 (Ma Phase 2: Ensign Ln to	and sidewalks on both sides in Ave) to Ensign Ln US 101	of Fort Stevens	s Hwy 104 Spur:		

				Cost Opinion			
				(2018			
ID	Project Type	Location	Priority	dollars)	Source	Jurisdiction	
BP22	Trail (Amenities)	Warrenton Waterfront Trail	Medium	TBD	2004 Warrenton TSP	Warrenton	
	Improve pedestrian an	nenities along the Warrentor	Waterfront Tra	ail including restr	ooms, lighting, t	rash receptacles	
BP23	Bicycle and Pedestrian (Connectivity); Safety	Skipanon River Br. No. 1400	Medium	Option A: \$25,000 Option B: \$2.1 million	New; Stakeholders	ODOT	
	Provide bicycle and pe Option A: Advanced s Option B: Cantilever r	edestrian improvements at th signing and striping to share nulti-use path on one side of	e OR 104S brid the road with bi bridge	ge over the Skipa cyclists	non River		
BP24	Trail (Connectivity)	Along Burma Rd to Delaura Beach Rd	Medium	\$300,000	2004 Warrenton TSP	State Parks / County / Warrenton	
	Construct multi-use pa	ath from north end of Burma	an Road to conr	nect to Fort Steve	ens State Park tra	ail system.	
BP25	Bicycle and Pedestrian (Connectivity)	SE Neptune Ave: E Harbor Dr to US 101	Medium	\$1.4 million	2004 Warrenton TSP	Warrenton	
	Construct bicycle lane: US 101.	s, curb, gutter and sidewalks	on both sides o	f SE Neptune Av	venue between H	Iarbor Drive and	
BP26	Pedestrian (Connectivity)	Warrenton-Astoria Hwy 105 (E Harbor Dr): Fort Stevens Hwy 104 (Main Ave) to Marlin Ave	Medium	\$3.2 million	2004 Warrenton TSP	ODOT	
	Construct curb, gutter Stevens Hwy 104 (Mai	and sidewalks on both sides in Avenue) to Marlin Avenue	of Warrenton-A	Astoria Hwy 105	(E Harbor Drive	e) from Fort	
BP27	Construct curb and sidewalk	Warrenton-Astoria Hwy 105 (E Harbor Dr): Marlin Ave to US 101	Medium	\$1.6 million	2004 Warrenton TSP	ODOT	
	Construct curb, gutter Avenue to US 101.	and sidewalks on both sides	of Warrenton-A	Astoria Hwy 105	(E Harbor Driv	e) from Marlin	
BP28	Provide sidewalks on S Main Ave	S Main Ave and SW 14 th Pl (Orchard Subdivision)	Medium	\$24,000 (CIP estimate)	2017 Warrenton CIP	Warrenton /ODOT	
	Provide sidewalks on S	5 Main Avenue per City agre	ement with Orc	hard Subdivision	Developer.		
BP29	Trail (Connectivity)	NW 13 th St and Warrenton Dr Trail	Medium	\$113,000 (CIP estimate)	2017 Warrenton CIP	Warrenton	
	Provide multi-use trail	along NW 13 th St between V	Warrenton Dr a	nd River Front T	rail.		
BP30	Pedestrian (Connectivity)	Fort Stevens Hwy 104 Spur to US 101	Low	\$472,000	New	Warrenton	
	Construct sidewalk on south side of Ensign Ln						

				Cost Opinion			
ID	D • . /T	T , •	D • •	(2018	0	т. т. тт.	
ID	Project Type	Location	Priority	dollars)	Source	Jurisdiction	
BP31	(Modernization)	Airport Dike Trail	Low	\$3.3 million	2004 Warrenton TSP	Warrenton / Airport (?)	
	Pave top of Airport D	ike Trail from Hwy 105 by L	ewis and Clark	bridge to US 101.			
	Transit						
T1	Transit	City wide	High	TBD	2004 Warrenton TSP	Sunset Empire Transportation District / NorthWest POINT	
	Extend hours, decreas future demands, impro	e headway, review scheduling ove connections, and advertis	g, improve efficients se and promote	iency of dial-a-rid services.	e program, mee	t the needs of	
Τ2	ADA compliance	City wide	High	Costs vary	2004 Warrenton TSP	Warrenton	
	Modernize transit stop	os to accommodate mobility o	devices				
Т3	Transit	US 101 North and South of the New Youngs Bay Bridge	High	TBD	2004 Warrenton TSP	Warrenton / Astoria / ODOT	
	Install transit shelters a	and kiosks on US 101 and bo	oth the north an	d south ends of t	he New Youngs	Bay Bridge.	
Τ4	Transit	City wide	Medium	Costs vary	2004 Warrenton TSP	Warrenton / Varies	
	Increase transit amenities throughout the city (covered shelters, signage, and bus pullouts).						
	Street						
R1	Intersection Improvements	Fort Stevens Hwy 104 (Main Ave/Skipanon Dr) at Warrenton- Astoria Hwy 105	High	\$3 million	Stakeholders	ODOT	
	Modify intersection to accommodate WB-62 trucks with a minimum turning radius of 45 degrees. This project rebuilds the intersection and includes water quality facilities, a new drainage system, concreate walks and curb. <i>Coordinate with BP4</i> .						
R2	Maintenance	N Main Ave and NW 7 th Pl (NW Warrenton Dr to NE 5 th St)	Medium	\$867,000 (CIP estimate)	2017 Warrenton CIP	Warrenton	
	Rebuild N Main Aven Also includes water sys	ue and NW 7 th Place betwees stem upgrades.	n NW Warrento	on Dr and NE 5 th	Street to impro-	ve rideability.	
R3	SDC	City of Warrenton	Medium	\$742,400 (CIP estimate)	2017 Warrenton CIP	Warrenton	

				Cost Opinion (2018			
ID	Project Type	Location	Priority	dollars)	Source	Jurisdiction	
	This project would allo	ocate the SDC funds for SD	C projects throu	ghout the city.			
R4	New Street (Connectivity)	SW 2 nd St (Elm – Gardenia)	Medium	\$315,000 (CIP estimate)	2017 Warrenton CIP; 2004 Warrenton TSP	Warrenton	
	Construct new section mitigation needs to be <i>This project builds on the</i>	of SW 2 nd Street to improve done. Potential wetland miti work that has already been comple	e connectivity. I igation not inclu leted on 2nd St.	Design will involve ided in estimate.	e determining if	any wetland	
R5	Street Upgrade; Maintenance	SW Alder Ave Reconstruction Project (SW 1 st – SW 3 rd)	Medium	\$185,000 (CIP estimate)	2017 Warrenton CIP	Warrenton	
	Rebuild SW Alder Ave	enue with curbs from 1 st Stre	et to 2 nd Street,	grind, and overla	y from 2 nd Street	t to 3 rd Street.	
R6	ITS	US 101 at Harbor, Marlin and Neptune	Medium	\$10,000/each \$30,000 total	New; Stakeholders	ODOT	
	An Intersection Contra- signal timing to optimi protecting/permitted p	ol Evaluation will be conduc ze traffic operations (e.g. Fla phasing). <i>A detailed traffic evalu</i>	ted to identify t ashing yellow ar <i>nation would be rea</i>	he preferred impr rows, cycle length <i>quired to determine a</i>	ovements such , optimize signa <i>ppropriate features</i> .	as modifying l splits,	
R7	Street Upgrade	Fort Stevens Hwy 104 (Main Ave) – 14th St to South of Spur	Medium	\$1.1 million	2004 Warrenton TSP	ODOT	
	Construct shoulder wi Avenue) between 14 th new drainage system a	dening of three feet on both Street to just south of the sp nd two water quality facilitie:	sides (conserva our to provide ac s. <i>Coordinate with</i>	tive estimate) of I dditional paved w <i>bicycle and pedestria</i>	Fort Stevens Hw idth. The estima an improvements B.	y 104 (Main te includes a P3 and BP29.	
R8	Street Upgrade	SE Anchor Ave: Harbor St to SE 3rd St	Medium	\$1.323 million (CIP estimate)	2017 Warrenton CIP	Warrenton	
	Rebuild SE Anchor Avenue and add sidewalk between Harbor Street and SE 3 rd Street. Also includes drainage and power line improvements.						
R9	Street Upgrade	SW 4th St: S Main Ave to SW Alder Ct	Medium	\$836,000 (CIP estimate)	2017 Warrenton CIP	Warrenton	
	Improve SW 4 th Street power line improveme	between S Main Avenue an nts.	d SW Alder Cou	art and add sidew	alk. Also include	es drainage and	
R10	Street Upgrade (Freight)	5th St: Hwy 104 (Warrenton Dr) to Skipanon Dr	Medium	\$9 million	New	Warrenton	
	Rebuild and widen roa the intersection of Hw 5th Street. Project assu	dway to accommodate WB of y 104 (Warrenton Drive) at imes new water quality facili	52 trucks. This i 5 th Street and ro ties, drainage sys	mprovement sup adway improvem stem, curb, gutter	ports a truck rou ents along Skipa and sidewalks.	ite by rebuilding mon Drive and	
				Cost Opinion (2018			
-----	---	--	----------------------------------	--	--	--------------------------------	
ID	Project Type	Location	Priority	dollars)	Source	Jurisdiction	
R11	New Street (Connectivity)	19th to Jetty or King	Medium	\$1.7 million	2004 Warrenton TSP; 2015 Clatsop County TSP; STIP	Warrenton / County	
	Construct a new road section.	by extending SE 19th St nor	th (connectivity	project). Project	assumes minor o	collector cross-	
R12	New Street (Connectivity)	NW/SW Juniper Ave: SW 9th St to Ridge Rd	Medium	\$3.8 million	2004 Warrenton TSP	Warrenton	
	Construct a new road cross-section and acco	by extending NW/SW Junip unts for excavation and emb	er Avenue (con oankment work.	nectivity project).	Project assumes	s minor collector	
R13	Intersection Improvements; Safety	Premarq Center accesses	Medium	\$10,000	New	Private / ODOT	
	Provide access manage	ement control measures to in	nprove safety ar	nd traffic flow at t	he Premarq Cer	iter accesses.	
R14	Intersection Improvements	Fort Stevens Hwy 104 (Main Ave/Skipanon Dr) at Warrenton- Astoria Hwy 105	Medium	Option A: \$1 million Option B: \$500,000	2004 Warrenton TSP	ODOT	
	An Intersection Control Evaluation will be conducted to identify the preferred improvements. Add capacity improvements such as: Option A: Install a roundabout Option B: Install a traffic signal, when warranted. <i>Project is subject to ODOT approval. Before a signal can be installed, an engineering investigation must be conducted or reviewed by</i> <i>Begin Traffic Manager, who will forward intersection traffic control recommendations to ODOT headquarters</i>					capacity or reviewed by the	
R15	Intersection Improvements	E Harbor Dr at SE Neptune Ave	Medium	Option A: \$1 million Option B: \$500,000	2004 Warrenton TSP	ODOT	
	An Intersection Contr improvements such as	ol Evaluation will be conduc :	ted to identify t	he preferred imp	rovements. Add	capacity	
	Option A: Install a rou	Indabout					
	Option B: Install a traffic signal, when warranted. Project is subject to ODOT approval. Before a signal can be installed, an engineering investigation must be conducted or reviewed by the Region Traffic Manager, who will forward intersection traffic control recommendations to ODOT headauarters.					or reviewed by the	
R16	Intersection Improvements	East Harbor Dr at SE Marlin Ave (Warrenton- Astoria Hwy 105)	Medium	Option A: \$1.2 million Option B: \$750,000	2004 Warrenton TSP	ODOT	

				Cost Opinion		
				(2018		
ID	Project Type	Location	Priority	dollars)	Source	Jurisdiction
	An Intersection Contro improvements such as	ol Evaluation will be conduc :	ted to identify t	he preferred impi	ovements. Add	capacity
	Option A: Modify SE	Marlin Avenue approach and	d install a round	labout	. 1	
	Project is subject to ODO' Region Traffic Manager, 10	Marlin Avenue approach and T approval. Before a signal can b who will forward intersection traff.	e installed, an engi c control recommen	signal, when war ineering investigation ndations to ODOT (ranted. <i>must be conducted</i> beadquarters.	or reviewed by the
R17	Intersection Improvements	Delaura Beach Ln at Ridge Rd	Medium	\$470,000	2004 Warrenton TSP	County
	Realign Delaura Beach	Lane to intersect with Ridg	e Road at a T-in	itersection.		
R18	Intersection Improvements	SE 9th St at Anchor Ave	Low	\$28,000	Stakeholders	Warrenton
	Add STOP-control at	the intersection of SE 9th Str	eet at SE Anch	or Avenue.		
R19	Intersection Improvements; Capacity	SE Marlin Ave (Warrenton-Astoria Hwy 105) at US 101	Low	\$1.1 million	2004 Warrenton TSP	ODOT
-	Add right-turn lanes of	n SE Marlin Ave (Warrentor	n-Astoria Hwy 1	05) approaches		
R20	Intersection Improvements; Capacity	E Harbor Dr at US 101	Low	\$1.2 million	2004 Warrenton TSP	ODOT
	Add second eastbound through lane.	l left-turn lane on E Harbor	Drive, second r	orthbound throu	gh lane, and sec	ond southbound
R21	Intersection	East Harbor Dr at SE	Low	Option A:	2004	ODOT
	Improvements; Capacity	Marlin Ave (Warrenton- Astoria Hwy 105)		\$1.2 million Option B: \$400,000	Warrenton TSP	
	An Intersection Contro improvements such as	ol Evaluation will be conduc :	ted to identify t	he preferred imp	ovements. Add	capacity
	Option A: Install a rou	Indabout				
	Option B: Add westbo westbound through tra delays on the south leg	ound left-turn lane on East H affic on East Harbor Drive, l g.	Iarbor Drive. The but further impr	his improvement rovements would	would decrease be necessary to	traffic delays for resolve the
	Project is subject to ODO will forward intersection tr	Γ approval. An engineering inves affic control recommendations to (tigation must be co DOT headquart	onducted or reviewed a ers. Coordinate with	by the Region Traf roadway improven	fic Manager, who eent R19.
R22	Intersection	OR 104 Spur at Ensign	Low	Option A: \$1	Stakeholder	ODOT
	Safety			Option B: \$140,000		
	An Intersection Contr	ol Evaluation will be conduc	ted to identify t	he preferred impi	ovements. Add	capacity
	Improvements such as Option A: Install a rou	: Indabout				

				Cost Opinion		
				(2018		
ID	Project Type	Location	Priority	dollars)	Source	Jurisdiction
	Option B: Widen OR	104 Spur to add a dedicated	westbound left-	turn lane with 10	0 feet of storage	· · ·
	Project is subject to ODO will forward intersection to	1 approval. An engineering invest affic control recommendations to (tigation must be co ODOT headquart	onducted or reviewed ers.	by the Region Iraf	fic Manager, who
R23	New Street (Connectivity)	Private road (SE 7th St): Hwy 104 (Main Ave) to SE Marlin Ave	Low	\$20 million	2004 Warrenton TSP	Private / Warrenton
	Construct a new local assumes a new 3-lane	roadway by extending SE 7 th bridge over the Skipanon Slo	¹ Street east to c ough.	onnect to SE Ma	rlin Avenue. The	e project
R24	Intersection Improvements;	SE Ensign Ln at Warrenton Highland	Low	Option A: \$105,000	Stakeholders	Warrenton
	Capacity	Shopping Center		Option B: \$420,000		
	Provide a westbound left-turn from SE Ensign Lane to the Warrenton Highland Shopping Center. Option A: Remove existing raised median and add a westbound left-turn lane to provide single-vehicle turn lane Option B: Reconstruct roadway to provide a westbound left-turn lane and shared through-right <i>Traffic counts were not collected at this intersection as part of the TSP Update and a more detailed traffic analysis is recommended before</i> selection at this access.					icle turn lane recommended before
R25	Maintenance	SE Main Ct (9 th – 11 th)	Low	\$107,000 (CIP estimate)	2017 Warrenton CIP	Warrenton
	Rebuild SE Main Cou	rt between SE 9th Street and	SE 11 th Street.			
R26	Maintenance; Street Upgrade	SE 2 nd St (Main – Skipanon River Park/Anchor Ave)	Low	\$281,000 (CIP estimate)	2017 Warrenton CIP	Warrenton
	Rebuild SE 2 nd Street River Park.	between S Main Street and S	E Anchor Aven	ue and pave from	h Anchor Avenu	e to Skipanon
	Other (Bridge, Air, V	Water)				
O1	Maintenance	Marina/Rivers	Medium	Cost varies	2004 Warrenton TSP	Warrenton
	Improve existing wate	r facilities				
O2	Bridge	Skipanon River Br. No. 1400	Low	\$2.1 million	2004 Warrenton TSP	ODOT
	Retrofit Skipanon Rive	er Bridge to address structura	al deficiency.			
O3	Maintenance	Astoria Regional Airport	Low	TBD	2004 Warrenton TSP	Airport
	Improve runway surfa	ce at Astoria Regional Airpo	rt			

ID	Project Type	Location	Priority	Cost Opinion (2018 dollars)	Source	Jurisdiction
O4	Safety	Astoria Regional Airport	Low	TBD	2004 Warrenton TSP	Airport
	Improve runway safety	y areas				

SECTION 9 **TECH MEMO NINE** FINANCE PROGRAM

DRAFT MEMORANDUM #9

DATE:	May 2, 2018
TO:	Warrenton TSP Project Management Team
FROM:	Ray Delahanty, AICP, DKS Associates Lorel Camacho, DKS Associates Jasmine Teramae-Kaehuaea, DKS Associates
SUBJECT	Warrenton Transportation System Plan Update Task 5.4 Finance Program

P14180-008

The purpose of this memorandum is to present the transportation funding that is expected to be available through 2040, as well as the potential investments and associated costs identified in the solutions phase of the Transportation System Plan (TSP) process. The funding assumptions will help prioritize the investments the City can make in the transportation system, and will be utilized to develop a set of transportation improvements that will likely be funded to meet identified needs through 2040.

Current City Funding Sources

Three general funding sources are utilized by the City for transportation, Local Motor Vehicle Fuel Tax, a System Development Charge (SDC), and State Highway Fund. In addition to City-funded projects, new private development will build some of the proposed transportation projects in Warrenton.

The City of Warrenton collects system development charges (SDCs) from new developments, which are intended to offset the burden of development on the transportation system. The funds collected are kept in a dedicated SDC fund, apart from the City's general-purpose street operations, maintenance, and capital improvements fund. State law restricts the use of SDC funds to capacity-adding projects, generally for constructing or improving portions of roadways impacted by applicable development. The SDC is a one-time fee collected at the building permit stage. The vehicle SDC rate is currently \$436 per hour per trip (or \$669 per single-family dwelling) based on a methodology prepared in FCS Group in 2012. The fees have not been updated or adjusted for construction cost since original adoption The City has also adopted a local, 3 cents per gallon gas tax for transportation improvements.

State funds through the State Highway Fund comes from state motor vehicle fuel taxes, vehicle registration fees, and truck weight-mile fees, and are distributed on a per capita basis. Furthermore, House Bill 2017 introduced or increased several taxes and fees such as the state gas tax and vehicle registration fees that provides new revenue to earmarked projects. By statute, the money may be used for any road-related purpose, including walking, biking, bridge, street, signal, and safety improvements. However, state highway dollars can only be spent on roads open to motor vehicles and at least 1% of these funds must be spent on bicycle and/or pedestrian infrastructure improvements.

State gas tax funds have previously failed to keep up with cost increases and inflation. With increased fuel efficiency of vehicles and the State's emphasis on reducing vehicle miles traveled, the real revenue collected has gradually eroded over time. The Oregon state fuel tax (on both gasoline and diesel) is currently 34 cents per gallon. With the passage of HB 2017, it will gradually increase by 10 cents between the years 2018 and 2024.

Estimated Future Funding Levels

The funding sources above provide relatively stable revenue for the City of Warrenton. Based on recent and expected expenditure levels, this section discusses funding assumed to be available for the projects that will be recommended in the updated Transportation System Plan. Calculations presented here include impacts of a 27% total increase in population by the year 2040, based on the Astroia-Warrenton regional travel demand model¹.

Revenue: Current revenue sources are expected to provide about \$21 million through 2040. This estimate is based on the assumption that the average amounts received over the previous five years will continue to be received at that per capita rate through 2040. Warrenton is expected to generate \$384,000 in Local Motor Vehicle Fuel Tax and \$378,000 in State Highway Fund shared revenue. House Bill 2017 is expected to contribute an additional \$121,000 annually. Forecast estimated SDC revenue was based, instead, on the current SDC rates that was used in the City's SDC methodology (for residential developments \$669 per single-family dwelling and for non-residential developments \$436 per hour per trip) and the forecasted yearly population and employment growth through 2040. This calculation yields an estimate of \$1,784,400 over the planning horizon.

Expenditures: Current expenditures are expected to be around \$15.4 million through 2040, based on revenue and expenditures over the past five years. Over the past five years, the City averaged about \$132,500 in personnel costs, \$238,000 in materials and services, and \$299,000 in capital costs related to operations and maintenance.

Revenue and expenditures are summarized in the table below.

ODOT Statewide Transportation Improvement Program (STIP) Enhance Funding

ODOT has modified the process for selecting projects that receive STIP funding to allow local agencies to receive funding for projects off the state system. Projects that enhance system connectivity and improve multi-modal travel options are the focus. The updated TSP prepares the City to apply for STIP funding. It is expected that ODOT will allocate about \$5 million for improvements in Warrenton over the planning horizon.

Summary of Funds for Transportation Improvements: About \$5.5 million in City funds and \$5 million in additional ODOT STIP funds are expected to be available for street improvement needs after accounting for estimated expenditures through 2040. These funds can potentially be spent on transportation improvement needs.

¹ 1 The Astoria-Warrenton regional travel demand model is managed by the Oregon Department of Transportation (ODOT) Transportation Planning and Analysis Unit (TPAU).

Warrenton Transportation Funding (2018 Dollars)				
Revenue Source	Average	Annual Amount	Estimated	l Amount Through 2040
System Development Charges ¹	\$	77,600	\$	1,784,400
State Highway Funds	\$	378,000	\$	8,694,000
Local Motor Vehicle Fuel Tax	\$	384,000	\$	8,832,000
House Bill 2017 (10 Years)	\$	121,000	\$	1,210,000
Additional ODOT STIP Funds	\$	217,500	\$	5,000,000
Misc. Revenue	\$	18,500	\$	425,500
Total Revenue	\$	1,196,600	\$	25,945,900
Expenditures	Average	Annual Amount	Estimated	l Amount Through 2040
Personnel Services	\$	132,500	\$	3,047,500
Materials & Services	\$	238,000	\$	5,474,000
Capital Expenses	\$	299,000	\$	6,877,000
Total Expenditure	\$	669,500	\$	15,398,500
Total Estimated Funding	\$	527,100	\$	10,547,400

Table 1: Current and Project Warrenton Transportation Funding (2018 Dollars)

¹ Estimated SDCs were based on forecast future trip-ends rather than historical averages

Project Investments

Taking the network approach to transportation system improvements, the projects in this plan fall within one of several categories:

- **Motor Vehicle** projects to improve connectivity, safety and capacity throughout the City. Warrenton identified 25 driving projects that will cost an estimated \$46.7 million to complete.
- Pedestrian projects for sidewalk infill and crossing enhancements, providing seamless connections for pedestrians on major routes throughout the City. Sidewalk infill on local roads will be addressed through city code changes and these projects are expected to be financed by developers or property owners. Warrenton identified 16 walking projects on collector roadways that will cost an estimated \$12 million to complete.
- **Biking** projects including an integrated network of bicycle lanes and shared roadways to facilitate convenient travel citywide. Warrenton identified five biking projects that will cost an estimated \$570,000 to complete.
- **Pedestrian and Biking** projects that include both a pedestrian and bicycle improvement listed above. Warrenton identified 11 pedestrian and biking projects that will cost an estimated \$9.5 million to complete.

- **Transit** projects to enhance the quality and convenience for passengers. Warrenton identified four transit projects.
- Other projects to improve water and airport facilities. Warrenton identified four other projects.Port of Astoria owns and manages water and streets on airport property and is working with the City to make upgrades.

Overall, Warrenton identified 65 individual transportation solutions, totaling an estimated \$74 million worth of investments. Some of the projects identified in the TSP may be funded through other sources and led by development or funding partners such as Clatsop County or ODOT. Based on current funding levels, the City is expected to have funding shortfall of approximately \$63.5 million to fund the projects included in the TSP. The City may wish to consider expanding its funding options in order to provide a reasonable funding strategy so improvements can be constructed in a timely manner. Potential additional funding sources are included in the next section.

Potential Additional Funding Sources

New transportation funding options include assessments and charges, and state and federal appropriations, grants, and loans, tax increment financing (urban renewal), development agreements and public private partnerships. All of these resources can be constrained based on a variety of factors, including the willingness of local leadership and the electorate to burden citizens and businesses; the availability of local funds to be dedicated or diverted to transportation issues from other competing City programs; and the availability of state and federal funds. Nonetheless, it is important for the City to consider all opportunities for providing, or enhancing, funding for the transportation improvements included in the TSP.

The following sources have been used by cities to fund the capital and maintenance aspects of their transportation programs. There may be means to begin to or further utilize these sources, as described below, to address existing or new needs identified in the TSP.

Transportation Utility Fee

A transportation utility fee is a recurring monthly charge that is paid by all residences and businesses within the City. The fee can be based on the number of trips a particular land use generates or as a flat fee per unit. It can be collected through the City's regular utility billing. Existing law places no express restrictions on the use of transportation utility fee funds, other than the restrictions that normally apply to the use of government funds.² Some cities utilize the revenue for any transportation related project, including construction, improvements and repairs. However, many cities choose to place self-imposed restrictions or parameters on the use of the funds.

Assuming a flat fee of \$5.00 per month per water meter for both residential and \$ 0.5 per month per square foot for non-residential uses in the City, the City could collect approximately an additional \$19 million (\$1.6 million average annually) for transportation related expenses through 2040. The City of Philomath, for example, charges a fee of \$4

² Implementing Transportation Utility Fees, League of Oregon Cities

per month for single family residential units, \$3.20 per month for multi-family units, and between \$13.60 and \$45.50 (based on type and size of the land use) per month for non-residential uses.

ODOT All Road Transportation Safety (ARTS) Funding

ODOT All Roads Transportation Safety Program (ARTS) is used to address safety challenges on all public roads. ODOT may increase the amount of funding available for safety projects on local roads. Safety funding will be distributed to each ODOT region, which will collaborate with local governments to select projects that can reduce fatalities and serious injuries, regardless of whether they lie on a local road or a state highway.

Projects will be built into the 2021-2024 STIP timeframe. An application must be submitted to obtain ARTS funding for local roads. In addition, the funds must make use of ODOT-approved countermeasures directed towards decreasing fatal and serious injury crashes.

Safe Routes to School

The Oregon Safe Routes to School (SRTS) Program has money allocated for projects that improve connectivity for children to walk, bike and roll to and from school. Potential grant funds are distributed as a reimbursement program through an open and competitive process. Funding is available through this program for pedestrian and bicycle infrastructure projects within two miles of schools. These funds should be pursued to implement key pedestrian and bicycle projects identified through the SRTS process.

General Fund Revenues

At the discretion of the City Council, the City can allocate General Fund revenues to pay for its transportation program (General Fund revenues primarily include property taxes, use taxes, and any other miscellaneous taxes and fees imposed by the City). This allocation is completed as a part of the City's annual budget process, but the funding potential of this approach is constrained by competing community priorities set by the City Council. General Fund resources can fund any aspect of the program, from capital improvements to operations, maintenance, and administration. Additional revenues available from this source are only available to the extent that either General Fund revenues are increased or City Council directs and diverts funding from other City programs.

Urban Renewal District

An Urban Renewal District (URD) would be a tax-funded district within the City. The URD would be funded with the incremental increases in property taxes that result from construction of applicable improvements. This type of tax increment financing has been used in Oregon since 1960. Use of the funding includes, but is not limited to, transportation. Improvements are funded by the incremental taxes, rather than fees.

Local Improvement Districts

Local Improvement Districts (LIDs) can be formed to fund capital transportation projects. LIDs provide a means for funding specific improvements that benefit a specific group of property owners. LIDs require owner/voter approval and a specific project definition. Assessments are placed against benefiting properties to pay for improvements. LIDs

can be matched against other funds where a project has system wide benefit beyond benefiting the adjacent properties. LIDs are often used for sidewalks and pedestrian amenities that provide local benefit to residents along the subject street.

Debt Financing

While not a direct funding source, debt financing can be used to mitigate the immediate impacts of significant capital improvement projects and spread costs over the useful life of a project. This has been successful recently in Oregon communities such as Bend and McMinnville, where general obligation (GO) bond measures were passed. Key to the measures' success was that the increased property taxes were earmarked toward a defined set of projects with strong public support.

Though interest costs are incurred, the use of debt financing can serve not only as a practical means of funding major improvements, but is also viewed as an equitable funding strategy, spreading the burden of repayment over existing and future customers who will benefit from the projects. The obvious caution in relying on debt service is that a funding source must still be identified to fulfill annual repayment obligations.

Developing the Plan

Warrenton must make investment decisions to develop a set of transportation improvements that will likely be funded to meet identified needs through 2040. The City is expected to have approximately \$10.5 million to cover project costs identified for the highest priority projects. Unless the City expands its funding options, most of the transportation solutions identified for the City are not reasonably likely to be funded through 2040. For this reason, the transportation solutions will be split into three categories. Those reasonably expected to be funded by 2040 were included in the Likely Funded Transportation System, those that may be funded if additional funding sources are identified are included in the Possibly Funded Transportation System, and the projects that are not expected to be funded by 2040 were included in the Aspirational Transportation System.

Likely Funded Transportation System

The Likely Funded Plan identifies the transportation solutions reasonably expected to be funded by 2040 and have the highest priority for implementation. Using the eight goals (see Technical Memorandum #4- Goals, Objectives and Evaluation Criteria), the transportation solutions were evaluated and compared to one another. Greater value was placed on the projects stakeholders felt were most important to the community. About \$10.5 million worth of investments, shown in the table below, are included in the Likely Funded Transportation System.

Likely Funded Projects				
Project No.	Description	Location	Cost	
BP1	Improve wayfinding signage and visibility of Warrenton Waterfront Trail. Provide a bicycle wayfinding signage network to help guide bicyclists to and from local destinations via bike routes and trails.	Warrenton Waterfront Trail	\$50,000	
BP2	Provide a path connection and wayfinding for the Airport Dike Trail to cross US 101 at Harbor Drive.	Airport Dike Trail: US 101 at Harbor Dr	\$133,000	
BP3	Install bicycle parking at points of interest, such as downtown Warrenton, the City Park and the Warrenton Soccer Complex.	Parks, downtown, soccer complex	\$5,000	
BP4	Improve pedestrian crossing at Fort Stevens Hwy 104, Warrenton-Astoria Hwy 105 (E Harbor Dr) and Skipanon Dr/Main Ave	Fort Stevens Hwy 104, Warrenton-Astoria Hwy 105 (E Harbor Dr) and Skipanon Dr/Main Ave	\$100,000	

Likely Funded Projects					
Project No.	Description	Location	Cost		
BP5	Construct a 10-foot wide multi-use path on the east side of Ridge Road from SW 9th Street to the north edge of the Warrenton Soccer Complex.	Ridge Rd: SW 9th St north along soccer fields	\$200,000		
BP6	Construct an at-grade pedestrian crossing of Ridge Road at the Warrenton Soccer Complex with high visibility paint and advanced signage.	Soccer fields and across/along Ridge Rd	\$20,000		
BP7	Enhance bicycle connectivity in Hammond. Option A: Install wayfinding and sharrows on parallel routes (6th and 7th) through Hammond and provide high visibility crosswalk across Pacific Drive. Option B: Construct curb, gutter and sidewalks on Pacific Drive through Hammond	Pacific Dr (Hammond)	\$50,000		
BP8	Add bicycle route designation signage for length of Warrenton-Astoria Hwy 105 within Warrenton city limits.	Warrenton-Astoria Hwy 105	\$25,000		
BP9	Install high visibility crosswalk at the intersection of Fort Stevens Hwy 104 (Main Avenue) at SW 9th Street to enhance visibility of crossing near elementary school.	Fort Stevens Hwy 104 (Main Ave) at SW 9th St	\$2,000		
BP10	Upgrade curb and crosswalks to be ADA- compliant at Warrenton Elementary School.	SW Cedar Ave at SW 7th St	\$40,000		
BP11	New marked crosswalks near community center/park. The crossings at SW 4th Street would also require installation of new curb.	SW Alder Ave at SW 3rd St and SW 4th St	\$30,000		
BP12	Enhance bicycle visibility on New Youngs Bay Bridge. Option A: Install signage indicating bicyclists in outer lane. Option B: Install additional bike detection for cyclists traveling along the bridge	New Youngs Bay Bridge	\$500,000		
BP25	Construct bicycle lanes, curb, gutter and sidewalks on both sides of SE Neptune Avenue between Harbor Drive and US 101.	SE Neptune Ave: E Harbor Dr to US 101	\$1,400,000		

Likely Funded Projects					
Project No.	Description	Location	Cost		
BP27	Construct curb, gutter and sidewalks on both sides of Warrenton-Astoria Hwy 105 (E Harbor Drive) from Marlin Avenue to US 101.	Warrenton-Astoria Hwy 105 (E Harbor Dr): Marlin Ave to US 101	\$1,600,000		
BP28	Widen road to provide additional paved width for pedestrian connectivity on Delaura Beach Lane.	Delaura Beach Ln: Pine Dr to Ridge Rd	\$1,400,000		
T1	Extend hours, decrease headway, review scheduling, improve efficiency of dial-a-ride program, meet the needs of future demands, improve connections, and advertise and promote services.	City wide	TBD		
T2	Modernize transit stops to accommodate mobility devices	City wide	TBD		
Т3	Install transit shelters and kiosks on US 101 and both the north and south ends of the New Youngs Bay Bridge.	US 101 North and South of the New Youngs Bay Bridge	TBD		
R1	Modify intersection to accommodate WB-62 trucks with a minimum turning radius of 45 degrees. This project rebuilds the intersection and includes water quality facilities, a new drainage system, concreate walks and curb.	Fort Stevens Hwy 104 (Main Ave/Skipanon Dr) at Warrenton-Astoria Hwy 105	\$3,000,000		
R5	Construct new section of SW 2nd Street to improve connectivity. Design will involve determining if any wetland mitigation needs to be done. Potential wetland mitigation not included in estimate.	SW 2 nd St (Elm – Gardenia)	\$315,000		
R6	Rebuild SW Alder Avenue with curbs from 1st Street to 2nd Street, grind, and overlay from 2nd Street to 3rd Street.	SW Alder Ave Reconstruction Project (SW 1 st – SW 3 rd)	\$185,000		
R10	Construct shoulder widening of three feet on both sides (conservative estimate) of Fort Stevens Hwy 104 (Main Avenue) between 14th Street to just south of the spur to provide additional paved width. The estimate includes a new drainage system and two water quality facilities.	Fort Stevens Hwy 104 (Main Ave) – 14th St to South of Spur	\$1,100,000		
R12	Improve SW 4th Street between S Main Avenue and SW Alder Court and add sidewalk. Also includes drainage and power line improvements.	SW 4th St: S Main Ave to SW Alder Ct	\$296,000		

Possibly Funded Transportation System

The Possibly Funded Plan identifies additional transportation solutions that could be funded if the City develops new revenue sources. If the new funding sources do not become viable options, these projects would not be funded. The assumed possible new sources are summarized in the table below.

Using these potential new funding sources, the additional projects in Possibly Funded table could be funded. More projects could be funded through other sources, such as development, state or federal funding, urban renewal

Potential New Funding Source			
Description	Estimated Amount Through 2040		
Transportation Utility Fee	\$19,000,000		
Total New Revenue	\$19,000,000		

districts, local improvement districts, and reallocating general fund and lodging tax revenues to transportation projects. The Possibly Funded Transportation System includes about \$18.7 million in transportation investments.

Possibly Funded Projects					
Project No.	Description	Location	Cost		
BP13	Construct a new trail connection from the KOA access east to NW Warrenton Drive following the NW 11th Street alignment. Includes excavation and embankment.	KOA access/NW 11th alignment	\$2, 700 , 000		
BP14	Install bicycle facilities along Fort Stevens Hwy 104 (Main Avenue): Option A: Install sharrows and "share the road" signage Option B: Remove parking on one side of the roach and widening where needed to provide striped bicycle facilities	Fort Stevens Hwy 104: Harbor Dr to 9th St	\$30,000		
BP15	Construct sidewalks on both sides of SE 19th Street south of Ensign Lane. Project includes new sidewalk, curb and gutter on the north/east side of the road and extends the sidewalk on the south/west side of the road.	SE 19th: Ensign Ln to Chokeberry Ave	\$1,600,000		
BP16	Construct a 10-foot wide multi-use path on one side of Pacific Drive from Lake Drive to Fort Stevens State Park entrance.	Hammond to Fort Stevens State Park	\$600,000		
BP17	Provide enhanced bicycle and pedestrian connectivity along SW 9th Street. Option A: Widen sidewalk to 10 feet on north side Option B: Multiuse path (Cedar Dr to Ridge Rd)	SW 9th St: SW 9th St to Ridge Rd	\$1,160,000		

Possibly Funded Projects						
Project No.	Description	Location	Cost			
BP18	Stripe bicycle lane stencil on both sides of the road for length of Fort Stevens Hwy 104 Spur to indicate bicyclists are present.	Fort Stevens Hwy 104 Spur	\$10,000			
BP19	Construct curb, gutter and sidewalks on the east side of Fort Stevens Hwy 104 between SW 3rd Street and SE 9th Street.	Fort Stevens Hwy 104:SW 3 rd St to SE 9 th St	\$1,400,000			
BP20	Construct bicycle lanes, curb, gutter and sidewalks on both sides of SE Marlin Avenue between Harbor Drive and SE 6th Street.	Warrenton-Astoria Hwy 105 (SE Marlin Ave): Harbor Dr to SE 6th St	\$1,500,000			
BP23	Provide bicycle and pedestrian improvements at the OR 104S bridge over the Skipanon River Option A: Advanced signing and striping to share the road with pedestrian and bicyclists Option B: Cantilever multi-use path on one side of bridge	Skipanon River Br. No. 1400	\$25,000			
BP24	Construct multi-use path from north end of Burman Road to connect to Fort Stevens State Park trail system.	Along Burma Rd to Delaura Beach Rd	\$300,000			
BP29	Provide sidewalks on S Main Ave	S Main Ave and SW 14 th Pl (Orchard Subdivision)	\$24,000			
BP30	Provide multi-use trail along NW 13th St between Warrenton Dr and River Front Trail.	NW 13 th St and Warrenton Dr Trail	\$113,000			
R2	Rebuild N Main Avenue and NW 7th Place between NW Warrenton Dr and NE 5th Street to improve rideability. (Would also include water system upgrades of \$500,000)	N Main Ave and NW 7 th Pl (NW Warrenton Dr to NE 5 th St)	\$367,000			
R4	This project would allocate the SDC funds for street improvements throughout the city.	City of Warrenton	\$742 , 400			
R7	Rebuild SE Main Court between SE 9th Street and SE 11th Street.	SE Main Ct (9 th – 11 th)	\$107,000			
R9	Modify signal timing to optimize traffic operations (e.g. Flashing yellow arrows, cycle length, optimize signal splits, protecting/permitted phasing)	US 101 at Harbor, Marlin and Neptune	\$30,000			
R14	Construct a new road by extending SE 19th St north (connectivity project). Project assumes minor collector cross-section.	19th to Jetty or King	\$1,700,000			

Possibly Funded Projects					
Project No.	Description	Location	Cost		
R15	Construct a new road by extending NW/SW Juniper Avenue (connectivity project). Project assumes minor collector cross-section and accounts for excavation and embankment work.	NW/SW Juniper Ave: SW 9th St to Ridge Rd	\$3,800,000		
R16	Provide access management control measures to improve safety and traffic flow at the Premarq Center accesses.	Premarq Center accesses	\$10,000		
R17	Install a traffic signal, when warranted. Project is subject to ODOT approval. Before a signal can be installed, an engineering investigation must be conducted or reviewed by the Region Traffic Manager, who will forward intersection traffic control recommendations to ODOT headquarters.	Fort Stevens Hwy 104 (Main Ave/Skipanon Dr) at Warrenton-Astoria Hwy 105	\$500,000		
R18	Install a traffic signal, when warranted. Project is subject to ODOT approval. Before a signal can be installed, an engineering investigation must be conducted or reviewed by the Region Traffic Manager, who will forward intersection traffic control recommendations to ODOT headquarters.	E Harbor Dr at SE Neptune Ave	\$500,000		
R19	Modify SE Marlin Avenue approach and install a traffic signal, when warranted. Project is subject to ODOT approval. Before a signal can be installed, an engineering investigation must be conducted or reviewed by the Region Traffic Manager who will forward intersection traffic control recommendations to ODOT headquarters.	East Harbor Dr at SE Marlin Ave (Warrenton-Astoria Hwy 105)	\$750,000		
R20	Realign Delaura Beach Lane to intersect with Ridge Road at a T-intersection.	Delaura Beach Ln at Ridge Rd	\$470,000		

Aspirational Transportation System

The projects and actions outlined within the Likely Funded System and Possibly Funded System will significantly improve Warrenton's transportation system. If the City is able to implement a majority of the Likely Funded System and Possibly Funded System, nearly two decades from now Warrenton residents will have access to a safer, more balanced multimodal transportation network.

The Aspirational Transportation System identifies those transportation solutions that are not reasonably expected to be funded by 2040, but many of which are critically important to the transportation system. Some of the projects will require funding and resources beyond what is available in the time frame of this plan. Others are contingent upon redevelopment that makes it possible to create currently missing infrastructure, such as sidewalk connections.

Aspirational Projects Project No. Description Location Cost Construct curb, gutter and sidewalks on both sides **BP21** of Fort Stevens Hwy 104 Spur: Fort Stevens Hwy 104 Phase 1: Hwy 104 (Main Ave) to Ensign Ln Spur \$3,300,000 Phase 2: Ensign Ln to US 101 Improve pedestrian amenities along the Warrenton Waterfront BP22 Warrenton Waterfront Trail including restrooms, Trail lighting, trash receptacles Warrenton-Astoria Hwy Construct curb, gutter and sidewalks on both sides 105 (E Harbor Dr): of Warrenton-Astoria Hwy 105 (E Harbor Drive) **BP26** Fort Stevens Hwy 104 from Fort Stevens Hwy 104 (Main Avenue) to \$3,200,000 (Main Ave) to Marlin Marlin Avenue. Ave Fort Stevens Hwy 104 **BP31** Construct sidewalk on south side of Ensign Ln Spur to US 101 \$472,000 Pave top of Airport Dike Trail from Hwy 105 by **BP32** Airport Dike Trail Lewis and Clark bridge to US 101. \$3,300,000 Increase transit amenities throughout the city T4 City wide (covered shelters, signage, and bus pullouts). SE 2nd St (Main -Rebuild SE 2nd Street between S Main Street and **R**8 SE Anchor Avenue and pave from Anchor Skipanon River \$281,000 Avenue to Skipanon River Park. Park/Anchor Ave)

The Aspirational Transportation System, shown in the table below, includes about \$45.2 million worth of investments.

Finance Program

Aspirational Projects					
Project No.	Description	Location	Cost		
R11	Rebuild SE Anchor Avenue and add sidewalk between Harbor Street and SE 3rd Street. Also includes drainage and power line improvements.	SE Anchor Ave: Harbor St to SE 3rd St	\$654,000		
R13	Rebuild and widen roadway to accommodate WB 62 trucks. This improvement supports a truck route by rebuilding the intersection of Hwy 104 (Warrenton Drive) at 5th Street and roadway improvements along Skipanon Drive and 5th Street. Project assumes new water quality facilities, drainage system, curb, gutter and sidewalks.	5th St: Hwy 104 (Warrenton Dr) to Skipanon Dr	\$9,000,000		
R21	Add STOP-control at the intersection of SE 9th Street at SE Anchor Avenue.	SE 9th St at Anchor Ave	\$28,000		
R22	Add right-turn lanes on SE Marlin Ave (Warrenton-Astoria Hwy 105) approaches	SE Marlin Ave (Warrenton-Astoria Hwy 105) at US 101	\$1,100,000		
R23	Add second eastbound left-turn lane on E Harbor Drive, second northbound through lane, and second southbound through lane.	E Harbor Dr at US 101	\$1,200,000		
R24	Add westbound left-turn lane on East Harbor Drive. This improvement would decrease traffic delays for westbound through traffic on East Harbor Drive, but further improvements would be necessary to resolve the delays on the south leg.	East Harbor Dr at SE Marlin Ave (Warrenton- Astoria Hwy 105)	\$400,000		
R25	Widen OR 104 Spur to add a dedicated westbound left-turn lane with 100 feet of storage.	OR 104 Spur at Ensign Ln	\$140,000		
R26	Construct a new local roadway by extending SE 7th Street east to connect to SE Marlin Avenue. The project assumes a new 3-lane bridge over the Skipanon Slough.	Private road (SE 7th St): Hwy 104 (Main Ave) to SE Marlin Ave	\$20,000,000		
O1	Improve existing water facilities	Marina/Rivers	-		
O2	Retrofit Skipanon River Bridge to address structural deficiency.	Skipanon River Br. No. 1400	\$2,100,000		
O3	Improve runway surface at Astoria Regional Airport	Astoria Regional Airport	-		
O4	Improve runway safety areas	Astoria Regional Airport	-		

SECTION 10 TECH MEMO TEN TRANSPORTATION STANDARDS

MEMORANDUM #10

SUBJECT	Warrenton Transportation System Plan Update Task 5.4 Transportation Standards	P14180-008
FROM:	Ray Delahanty, AICP, DKS Associates Lorel Camacho, DKS Associates Jasmine Teramae-Kaehuaea, DKS Associates	
TO:	Warrenton TSP Project Management Team	
DATE:	June 18, 2018	

This memorandum recommends transportation system standards for the City of Warrenton, including recommended modifications to the existing standards to be adopted as part of the Transportation System Plan update. Warrenton applies transportation standards and regulations to the construction of new transportation facilities and to the operation of all facilities to ensure the system functions as intended and investments are not wasted. These standards reflect the goals of the City for a safe and efficient transportation system and enable consistent future actions. This section highlights recommended modifications to the standards to be adopted as part of the Transportation System Plan update.

Street Functional Classification

Street functional classification is an important tool for managing the roadway network. The street functional classification system recognizes that individual streets do not act independently of one another but instead form a network that works together to serve travel needs on a local and regional level. By designating the management and design requirements for each roadway classification, this hierarchal system supports a network of streets that perform as desired.

Consistency with Federal Naming Conventions

Aligning Warrenton's functional classification naming conventions with federal naming conventions may facilitate future efforts to obtain federal funding for local improvement projects. Recommended updates to the City's classification designations are shown in Table 1.

	Proposed Federally-Aligned Functional Classification Naming Conventions			
	Existing Classification Name	Proposed Aligned Classification Name		
	Arterial	Principal Arterial Minor Arterial		
-	Collector	Major Collector Minor Collector		
-	Local Street	Local Street		

Table 1: Proposed Federally-Aligned Functional Classification Naming Conventions

Recommended Functional Classification System

The recommended functional classification system for roadways in the City of Warrenton is described below. The functional classification map, Figure 1, shows the recommended classification for all roadways in the city, including new street extensions proposed as part of the motor vehicle system improvements.

Classifications shown for County roads inside the Warrenton UGB reflect the City's desired function for those facilities. These classifications may not match those shown in Clatsop County's TSP.

Principal and Minor Arterials

Principal arterials provide a high degree of mobility between major centers of metropolitan areas, as well as rural areas. They often serve high volumes of traffic (>10,000 daily vehicles) over long distances, typically maintain higher posted speeds (45 mph to 55 mph), and minimize direct access to adjacent land to support the safe and efficient movement of people and goods. Inside urban growth boundaries, speeds may be reduced to reflect the roadside environment and surrounding land uses. US 101 is the only principal arterial in the city.

Minor arterials provide service for trips of moderate length and serve geographic areas that are smaller than their higher-volume principal arterial counterparts. Because they primarily serve longer trips within the city, they should, where feasible, be provided in continuous lengths of multiple miles rather than in short segments. In an urban context, they are often used as a transition between principal arterials and collectors. Minor arterials typically serve higher volumes of traffic (>5,000 daily vehicles) at moderate to high speeds, with posted speeds generally no lower than 30 mph, unless they are passing through a downtown area.

Principal and minor arterial streets are often the fastest and most direct routes for all modes of travel, including people walking and biking. However, facilities for people walking and biking should be designed to provide a greater degree of separation from the higher volumes and speeds of auto traffic. Wider and more heavily traveled principal and minor arterial streets can also present barriers for people walking and biking where they need to cross the street to reach a destination. Therefore, the need for enhanced crossing opportunities may be greater.

Suggested spacing of minor arterial streets varies from 2 to 3 miles in suburban fringes to not more than 1 mile in fully developed areas. Access to adjacent land is provided but is a low priority.

Major and Minor Collectors

Collectors serve a critical role in the roadway network by connecting traffic from local streets with the arterial network. Major collector routes are generally distinguished from minor collector routes by longer length; lower connecting driveway densities; higher speed limits; greater spacing intervals; higher traffic volumes; and may have more travel lanes. The general traffic volume on a major collector ranges from 1,200 to 5,000 daily vehicles and speeds are often managed between 25 mph and 35 mph. The typical traffic volume on a minor collector ranges from 1,200 to 3,000 daily vehicles and speeds are managed to no more than 25 mph.

Due to the lower auto traffic volumes and speeds compared to arterials, traveling on major and minor collectors is generally more comfortable for people walking and biking. However, separate biking facilities are still needed.

The maximum interval for spacing collector streets should be approximately 1,500 feet. While access and mobility are more balanced than on arterials, new driveways serving residential units should not be permitted where traffic volume forecasts exceed 5,000 vehicles per day.

Local Streets

Local streets prioritize provision of immediate access to adjacent land. These streets should be designed to enhance the livability of neighborhoods and should generally accommodate less than 2,000 vehicles per day. When traffic volumes reach 1,000 to 1,200 vehicles per day through residential areas, safety and livability can be degraded. A well-connected grid system of relatively short blocks can minimize excessive volumes of motor vehicles and limits outof-direction travel, encouraging more use by people walking and biking. Speeds are not normally posted, with a statutory 25 mph speed limit in effect. Local streets are not intended to support long distance travel and are often designed to discourage through traffic.

Local streets typically provide low-stress travel routes for people walking and biking. Due to lower vehicle volumes and speeds, dedicated bicycle facilities are not required on local streets and cyclists can share the lane with vehicles. Dedicated pedestrian facilities are required, however, even curb-adjacent sidewalks on local streets can still provide a high level of comfort.

Proposed Functional Classification Changes in Warrenton

The following changes to street functional classifications are proposed to improve the network design and mobility within the City of Warrenton and to achieve consistency with the Federal Functional Classification system. Changes to the existing functional classifications will require coordination with ODOT to follow the formal process to update the federal classification map.

Table 2: Proposed Functional Classification Changes

Proposed Functional Classificati	on Changes	
Roadway	Existing Functional Classifications	Proposed Functional Classification
De Laura Beach Lane – Ridge Road to West Terminus	Collector	Minor Collector
De Laura Beach Lane/18th Street – Main Street/Fort Stevens Highway 104 to Ridge Road	Collector	Minor Collector
SW 9th Street - Main Street/Fort Stevens Highway 104 to Ridge Road	Collector	Minor Collector
Ridge Road/Columbia Beach Road –Jetty Road to De Laura Beach Lane/18 th Street	Collector	Major Collector
Lake Drive – Jetty Road to Hammond Marina	Collector	Major Collector
Seventh Avenue – Warrenton Drive/Fort Stevens Highway 104 to Iredale Road	Collector	Minor Collector
Highway 104 – Ridge Road to South UGB	Collector	Minor Arterial
NE 5 th Street – Warrenton Drive/Fort Stevens Highway 104 to NE Skipanon Drive	Collector	Minor Collector
NE Skipanon Drive – NE 5th Street to Warrenton-Astoria Highway	Collector	Minor Collector
NW 1st Street - Fort Stevens Highway 104 to SW Elm Avenue	Collector	Minor Collector
SW 2 nd Street – Fort Stevens Highway 104 to SW Juniper Avenue	Collector	Minor Collector
Juniper Avenue – SW 9th Street to North Terminus	Collector	Minor Collector
NE Neptune Avenue – Highway 101 to E Harbor Drive	Collector	Minor Collector
SE 19 th Street – Highway 101 Bypass/Warrenton-Astoria Highway to SW Willow Drive	Collector	Major Collector
Ensign Lane – Highway 101 to Highway 104s Fort Stevens Highway Spur	Collector	Minor Arterial
Ensign Lane – Highway 101 to East UGB	Arterial	Minor Arterial
SE 12 th Place – Highway 101 Bypass/Warrenton-Astoria Highway to Airport	Collector	Minor Collector
E Harbor Street – NE Skipanon Drive to Highway 101	Collector	Major Collector

Transportation Standards

Proposed Functional Classification Changes cont.				
Roadway	Existing Functional Classifications	Proposed Functional Classification		
Main Avenue – E Harbor Street to Highway 104s Fort Stevens Highway Spur	Collector	Major Collector		
Highway 104S Fort Stevens Highway Spur – Main Street/Highway 104 Fort Stevens Highway to 12 th Place	Collector	Major Collector		
Highway 101 – West UGB to East UGB	Arterial	Principal Arterial		

Truck Routes

Streets designated as Truck Routes in Warrenton are recognized as being appropriate and commonly traveled corridors for truck passage. Decisions affecting maintenance, operation, or construction on a designated truck route must address potential impacts on the safe and efficient movement of truck traffic. However, the intent is not to compromise the safety of other street users to accommodate truck traffic, especially in areas where many conflicts with vulnerable travelers (e.g., people walking and biking) may be present. The following local roads that provide access to industrial areas and help to minimizing truck volumes in downtown have been proposed as designated Truck Routes in the currently adopted TSP:

- NW 13th Street
- NE 5th Street
- NE Skipanon Drive
- SE 12th Place
- SE Ensign Lane
- SE Neptune Avenue

Designating these streets as local truck routes would establish the movement of truck traffic as a priority when considering future decisions such as whether to allow on-street parking, addressing requests for traffic calming, determining the need for separate biking facilities, or making changes to the physical curb-to-curb width and corner radii.

As noted in Technical Memorandum #2, US 101 (No. 9) is classified as a Statewide Highway, part of the National Highway System (NHS), a Truck Route, and a Scenic Byway. US 101B Business (No. 105), Fort Stevens Highway 104, and OR-104S (Fort Stevens Spur) are classified as District Highways with no other designations.

The design and management of the Truck Routes through Warrenton is subject to a number of policies and standards in the Oregon Highway Plan and Highway Design Manual intended to maintain safe and efficient movement of large vehicles.

Figure 2: Proposed Truck Routes

Tsunami/Earthquake Evacuation Routes

Much of the coast line surrounding Warrenton, including downtown Warrenton, falls under a distant tsunami evacuation zone, while the majority of remaining area within Warrenton should evacuate if a local Cascadia earthquake occurs. Much of the land surrounding the Skipanon River also falls under a distant tsunami evacuation zone. The safest evacuation areas within Warrenton include Ridge Road and the area bounded by southeast of US 101, Ensign Lane, and US 101B. These include congregation areas near Ridge Road and Southwest 9th Road, Ridge Road and Southwest Long Lake Drive, and Ensign Lane and Southeast 19th Street. Most evacuation routes follow the collector and arterial road network, with prominent routes including Ridge Road, OR 104, US 101, and East Harbor Road. However, because much of OR 104 falls under a distant tsunami zone and includes two bridges—one over Alder Creek and one over the Skipanon River that connects OR 104 to Northwest Harbor Place—there are inherent risks in relying on this as an evacuation route. If this route fails, there are limited possibilities for residences along the northeastern shoreline to evacuate. However, if Ridge Road can be reached, its relatively high elevation and capacity provide sufficient support to move people south to safe congregation areas.

Inventory of Arterial and Collector Evacuation Routes					
Roadway Name	Functional Classification	Jurisdiction	Important Uses		
US 101 (Oregon Coast Hwy)	Principal Arterial	State	NHS, High Clearance Route, Tier 3 lifeline route, Evacuation Route		
OR 104/Ft. Stevens Hwy	Major Collector	State	Evacuation Route		
US 101B/Warrenton-Astoria Hwy	Major Collector/Minor Arterial	State	Evacuation Route		
E Harbor St	Major Collector	State	Evacuation Route		
Ridge Rd	Major Collector	Clatsop County	Evacuation Route		
SE Ensign Ln	Major Collector	Clatsop County/Municipal Street	Evacuation Route		
OR 104S	Major Collector	State	Evacuation Route		
Marlin Ave	Minor Collector	State	Evacuation Route		
SW 18th St	Major Collector	City of Warrenton	Evacuation Route		
SE 12th Pl	Minor Arterial	City of Warrenton	Evacuation Route		

Table 3: Inventory of Arterial and Collector Evacuation Routes

Roadway and Shared-Use Path Cross-Sections

Roadway cross-section standards identify the design characteristics needed to meet the function and demand for each City of Warrenton transportation facility type. Since the actual design of a roadway can vary from segment to segment due to adjacent land uses and demands, this system allows standardization of key characteristics to provide consistency, while providing application criteria that allow some flexibility in meeting the design standards.

Figures 3 through 8 and Table 4 through 7 illustrate the standard cross-sections for minor arterials, major collectors, minor collectors, local streets, and shared-use paths in the City of Warrenton. These street standards are compliant with the Oregon Transportation Planning Rule, which specifies that local governments limit excessive roadway widths. They are intended to be used as guidelines in the development of new roadways and the upgrade of existing roadways. Planning level right-of-way needs can be determined using these figures. Under some conditions a variance to the street standards may be requested from the City-appointed engineer to consider the alternative minimum cross-section or other adjustments. Typical conditions that may warrant consideration of a variance include:

- Infill sites
- Innovative designs
- Severe constraints presented by topography, environmental, or other resources present
- Existing developments and/or buildings that make it extremely difficult or impossible to meet the standards

Roadways under ODOT jurisdiction are subject to design standards in ODOT's Highway Design Manual. Roadways under Clatsop County jurisdiction are subject to design standards in the Clatsop County TSP.

Figure 3: Proposed 4-Lane and 2-Lane Minor Arterial Typical Cross-Section Standards

Minor Arterial						
Width	4-Lane Standard	4-Lane Alte r native Minimum	2-Lane Standard	2-Lane Alternative Minimum	Considerations	
Right-of-Way	102 ft.	80 ft.	<u>78 ft.</u> 80 ft. <u>(82 ft.)1</u>	<u>58 ft.</u> (66 ft.) ¹	Median/flex lane and planting strips is optional depending on surrounding land use and available right-of-way.	
Curb-to-Curb Pavement	78 ft.	64 ft.	54 ft. <u>(58 ft.)¹</u>	<u>34 ft. 40 ft</u> . <u>(42 ft.)¹</u>	The standard design should be provided where feasible. In constrained areas where providing the standard widths are not practical, alternative	
Travel Lanes	12 ft.	11 ft.	12 ft. <u>(14 ft.)¹</u>	<u>11 ft. 12 ft. (14 ft.)¹</u>	minimum design requirements may be applied with approval of the City Engineer.	
Median/Flex Lane	14 ft.	None	14 ft.	None	On-street parking is not permitted on 4-lane minor arterial streets. On-street parking is permitted in	
Bike Lanes	8 ft.	6 ft.	8 ft.	<u>6 ft.</u> 8 ft.	However, where parking is constructed next to a	
On-Street Parking	None	None	8 ft.	<u>7 ft.</u> 8 ft.	14 feet to function as a shared roadway and accommodate bikes.	
Curb	Yes	Yes	Yes	Yes		
Planting Strip	6 ft.	6 ft.	6 ft.	6 ft.		
Sidewalks	6 ft.	6 ft.	6 ft.	6 ft.	-	

Table 4: Proposed Minor Arterial Typical Cross-Section Standards and Alternative Minimum Standards

*Changes from the Municipal Code Section 16.136.020 are shown in <u>underlined text</u> and existing standards where changes are proposed are shown in strikethrough text. Text not underlined or stricken is consistent with the City's current standard.

¹Width if on-street parking is constructed in place of bike lanes.

²Minor arterials under ODOT jurisdiction have to follow Oregon Highway Plan and Highway Design Manual.

Figure 4: Proposed Major Collector Typical Cross-Section Standard

Table 5: Proposed Major Collector Typical Cross-Section Standards and Alternative Minimum Standard

Major Collector					
Width	Standard	Alternative Minimum	Considerations		
Right-of-Way	64 ft. <u>(68 ft.)</u> 1	<u>58 ft.</u> 60 ft. <u>(66 ft.)1</u>	Planting strips is optional depending on surrounding land use and available right-of-way.		
Curb-to-Curb Pavement	40 ft. <u>(44 ft.)</u> 1	36 ft <u>(42 ft.)</u> 1	The standard design should be provided where feasible. In constrained areas where providing the standard widths are not practical, alternative minimum design requirements may be applied		
Traval Lanas	12 ft.	<u>11 ft. 12 ft.</u>	with approval of the City Engineer.		
Traver Lanes	$(14 \text{ ft.})^1$ $(14 \text{ ft.})^1$ On-street parking is permitted in place	On-street parking is permitted in place of bike lanes on major			
Median/Flex Lane	None	None	collector streets. However, where parking is constructed next travel lane, the travel lane width shall be increased to 14 feet t		
Bike Lanes	8 ft	6 ft.	parking is discouraged where posted speeds are greater than 35		
On-Street Parking	8 ft.	<u>7 ft.</u>			
Curb	Yes	Yes	_		
Planting Strip	6 ft.	6 ft.	_		
Sidewalks	6 ft.	6 ft.			

*Changes from the Municipal Code Section 16.136.020 are shown in <u>underlined text</u> and existing standards where changes are proposed are shown in strikethrough text. Text not underlined or stricken is consistent with the City's current standard. ¹Width if on-street parking is constructed in place of bike lanes.

Figure 5: Proposed Minor Collector Typical Cross-Section Standard

Table 6: Proposed Minor Collector Typical Cross-Section Standards and Alternative Minimum Standard

Minor Collector						
Width	Standard	Alte r native Minimum	Considerations			
Right-of-Way	<u>58 ft.</u> 64 ft. <u>(68 ft.)1</u>	<u>50 ft.</u> 60 ft. <u>(62 ft.)1</u>	Planting strips is optional depending on surrounding land use and available right-of-way.			
Curb-to-Curb Pavement	40 ft. <u>(44 ft.)¹</u>	36 ft <u>(42 ft.)</u> 1	The standard design should be provided where feasible. In constrained areas where providing the standard widths are not practical, alternative minimum design requirements may be applied			
Travel Lanes	<u>11 ft. 12 ft.</u>	<u>10 ft. 12 ft.</u> with approval of the City Engineer.	with approval of the City Engineer.			
	<u>(14 ft.)</u> ¹	<u>(14 ft,)</u> 1	On-street parking is permitted in place of bike lanes on minor			
Median/Flex Lane	None	None	collector streets. However, where parking is constructed next to a travel lane, the travel lane width shall be increased to 14 feet to			
Bike Lanes	<u>6 ft. 8 ft</u>	<u>5 ft.</u> 6 -ft	parking is discouraged where posted speeds are greater than 35 — mph.			
On-Street Parking	8 ft.	<u>7 ft.</u>				
Curb	Yes	Yes	_			
Planting Strip	6 ft.	<u>5 ft.</u> 6 -ft	_			
Sidewalks	6 ft.	<u>5 ft.</u> 6 -ft				

*Changes from the Municipal Code Section 16.136.020 are shown in <u>underlined text</u> and existing standards where changes are proposed are shown in strikethrough text. Text not underlined or stricken is consistent with the City's current standard. ¹Width if on-street parking is constructed in place of bike lanes.

Figure 6: Proposed Local Street Typical Cross-Section Standard

Constrained Local Road Standard

Table 7: Proposed Local Street Typical Cross-Section Standards and Alternative Minimum Standard

Local Street						
Width	Standard	Alternative Minimum	Considerations			
Right-of-Way	60 ft.	50 ft.	Planting strips is optional depending on surrounding land use and available right-of-way.			
Curb-to-Curb Pavement	36 ft.	28 ft.	 Parking on residential neighborhood streets is allowed and may be allowed on one side only in constrained areas or where approved by the City Engineer, resulting in a curb-to-curb width of 28 feet and overall right-of-way width of 48 feet. 			
Travel Lanes	12 ft.	10 ft	The constrained local road standard may be used when approved by the City of Warrenton. The standard is intended to apply under			
Median/Flex Lane	None	None	 The local road will serve 18 or fewer dwelling units upon buildout of adjacent property. 			
Bike Lanes	None	None	 The ADT volume of the road is less than 250 vehicle/day. 			
On-Street Parking	8 ft	8 ft	 Significant topographical or environmental constraints are present. Providing the following conditions will be met: 			
Curb	Yes	Yes	 Use of the alternative local road standard will not create gaps in connectivity or roadway standards with adjacent roadway sections (i.e., sidewalk, parking, travel lane widths). 			
Planting Strip	5 ft.	5 ft.	 The City Engineer and emergency service providers have reviewed and accepted usage of the alternative local 			
Sidewalks	5 ft.	5 ft.	ioadway stalidard.			

*Changes from the Municipal Code Section 16.136.020 are shown in <u>underlined text</u> and existing standards where changes are proposed are shown in strikethrough text. Text not underlined or stricken is consistent with the City's current standard. ¹Width if on-street parking is constructed in place of bike lanes.

Figure 7: Proposed Alley Typical Cross-Section Standard

Figure 8: Proposed Shared-Use Path Typical Cross-Section Standards and Alternative Minimum Standards

Enhanced Pedestrian Crossing Treatments

The following guidelines are intended to facilitate the development of potential alternatives for improving walking routes. A complete engineering investigation should be conducted prior to selecting an appropriate treatment for a given location.

Mid-Block Crossings are used in locations where the pedestrian demand is high, but access points are not conveniently located near an existing intersection. Common locations include transit stops, schools, parks, and other major destinations that attract high levels of walking and biking traffic.

Enhanced crossing treatments at mid-block crossings could include marked crosswalks, flashing beacons (which could be activated by the pedestrian), curb extensions, pavement markings and median refuge islands. Other important design elements to consider include lighting, advanced warning signs and clear, unobstructed driver views. Figure 9 shows examples of midblock crossing treatments.

Figure 9: Examples of Mid-Block Crossings

Source: www.pedbikeimages.org_MichaelFrederick

Signalized Intersection Crossings provide a greater level of protection and comfort for pedestrians because they more directly control the movement of traffic and are generally more visible to drivers. Basic signalized intersection crossings can be further enhanced through treatments such as leading pedestrian intervals, pedestrian countdown timers, median refuge islands, and curb extensions. A leading pedestrian interval is a brief period at the beginning of a green light where the pedestrian is able to enter the crosswalk before any other traffic is allowed to enter the intersection. This head start improves pedestrian visibility and helps establish them as the priority movement. This treatment is appropriate on all types of streets but is most effective where pedestrian crossings are in conflict with high volumes of right turning traffic or left turns that are allowed to proceed when no pedestrian is present.

Bridge/Overpass Crossings include elevated structures that provide pedestrian connections over a major obstacle such as a highway or river. Pedestrian bridges improve pedestrian safety when properly located and designed, however they can be costly. Design considerations for pedestrian bridges include path width, vertical clearance, ADA requirements and location. Pedestrian bridges are appropriate where there is moderate-to-high pedestrian demand, a large number of children that regularly cross, or over high-speed and high-volume roadways. Pedestrian bridges are often underutilized where their use requires significant out-of-direction travel or effort by the pedestrian and tend to be most effective where topography already creates a moderate elevation difference between the road being crossed and surrounding land.

Additional design guidance can be found in the National Association of City Transportation Officials (NACTO) Urban Street Design Guide and AASHTO's Guide for the Planning, Design, and Operation of Pedestrian Facilities. Also, all of these crossings and features on state highways have to be approved by ODOT.

Roadway and Access Spacing

The number and spacing of access points, such as driveways and street intersections, along a roadway affects its function and capacity. Access management is the control of these access points to match the functionality and capacity intended by the roadway's functional classification.

Access management is especially important on arterial and collector facilities to reduce congestion and crash rates and to provide for safe and efficient travel. Since each access point is an additional conflict point, reducing or consolidating driveways on these facilities can decrease collisions and preserve capacity on high volume roads, maintaining traffic flow and mobility within the city.

Balancing access and good mobility can be achieved through various access management strategies, including establishing access management spacing standards for driveways and intersections.

Warrenton Access Spacing Standards

Table 8 below contains recommended access spacing standards under the City of Warrenton's jurisdiction. New access points shall meet or exceed these minimum spacing requirements. However, where no reasonable alternatives exist or where strict application of the standards would create a safety hazard, the City may allow a variance.

Existing city access spacing standards to be included in table when made available by city.

Table 8: Existing and Recommended	Access Spacing Standards
-----------------------------------	--------------------------

Recommended Access Spacing Standards Functional Classification Current Minimum Access Spacing Recommended Minimum Access Spacing					
Major Arterial		150 ft			
Minor Collector 100 ft					
Local Street	25 ft	15 ft			

Clatsop County and State of Oregon Access Management Standards

Both Clatsop County and ODOT maintain access regulations for roadways under their jurisdiction. Clatsop County's access regulations are documented in the Clatsop County TSP in Volume 1. Access Management regulations for the state highways are provided through the 1999 Oregon Highway Plan and OAR 734-051.

Local Street Connectivity

Local street connectivity is required by the state Transportation Planning Rule (OAR 660-012) and is important for Warrenton's continued development. Providing adequate connectivity can reduce the need for wider roads, traffic signals, and turn lanes. Increased connectivity can reduce a city's overall vehicle miles traveled (VMT), balance the traffic load on major facilities, encourage citizens to seek out other travel modes, and reduce emergency vehicle response times. While improvement to local street connectivity is easier to implement in newly developed areas, retrofitting existing areas to provide greater connectivity should also be attempted.

Warrenton's existing street connectivity is constrained by natural features such as wetlands, railroads, highways, and by undeveloped areas of future development. The proposed Local Street Connectivity Plan shown in Figure 10 identifies approximate locations where new local street connections should be installed as areas continue to develop.

The Warrenton Municipal Code regulates proposed development in residential zones to ensure good transportation system connectivity is provided. Table 9 highlights key requirements and some proposed changes to consider.

Table 9: Proposed Changes to Connectivity Requirements

Proposed Changes to Connectivity Requirements				
Existing Requirement	Proposed Change			
Staggering of streets making "T" intersections at collectors and arterials shall not be designed so that jogs of less than 300 feet on such streets are created, as measured from the centerline of the street.				
Spacing between local street intersections shall have a minimum separation of 125 feet, except where more closely spaced intersections are designed to provide an open space, pocket park, common area or similar neighborhood amenity.				
The maximum block length shall not exceed 1,000 feet between street corner lines unless it is adjacent to an arterial street or unless the topography or the location of adjoining streets justifies an exception. The maximum length of blocks along an arterial is 1,800 feet.				
Cul-de-Sacs. A dead-end street shall be no more than 200 feet long, shall not provide access to greater than 18 dwelling units, and shall only be used when environmental or topographical constraints, existing development patterns, or compliance with other standards in this Code preclude street extension and through circulation.				
Pedestrian Access and Circulation	Pedestrian <u>and Bicycle</u> Access and Circulation			
Continuous Pathways. The pathway system shall extend throughout the development site, and connect to all future phases of development, adjacent trails, public parks and open space areas whenever possible.	Continuous Pathways. The pathway system shall extend throughout the development site, and connect to all future phases of development, adjacent trails, public parks, <u>transit stops</u> and open space areas whenever possible.			
Street Connectivity: Multi-use pathways (i.e., for pedestrians and bicyclists) are no less than six feet wide.	Street Connectivity: Multi-use pathways (i.e., for pedestrians and bicyclists) are no less than six -10 feet wide.			

Figure 10: Local Street Connectivity

Existing Taxlots

Mobility Targets

Mobility standards, or targets, are the thresholds set by an agency for the maximum amount of congestion that is acceptable for a given roadway. Warrenton does not currently have adopted mobility standards. The City would like to adopt mobility standards as part of this TSP Update process.

Similar cities, such as Philomath and Junction City, use "level of service" (LOS) as the measure of congestion for their mobility standards. Philomath has adopted LOS D as the minimum acceptable operating condition for both signalized and unsignalized intersections during the peak hour. Junction City has adopted LOS D as the minimum acceptable operating conditions for signalized intersection and LOS E for unsignalized intersections during the peak hour. LOS D equates to a maximum allowed average delay per vehicle of 55 seconds at signalized intersections. LOS E equates to a maximum allowed average delay per vehicle of 50 seconds at unsignalized intersections.

It is recommended that Warrenton adopt LOS D as the minimum acceptable operating condition for both signalized and unsignalized intersections during the peak hour. The assessment of traffic operating conditions under existing and future (year 2040) conditions conducted in Technical Memoranda #5 and #7 found that all studied intersections under City jurisdiction comply with the adopted LOS D mobility standard and will continue to do so through 2040. Establishing the recommended mobility standard will give the City of Warrenton the ability to ensure that future development proposals do not overly burden the transportation system and that improvements are made in a timely manner to maintain the desired level of service.

For roadways within the City of Warrenton that are under ODOT or Clatsop County jurisdiction, the mobility standards/targets of those agencies will apply. All intersections under ODOT jurisdiction must comply with the volume to capacity (v/c) ratio targets in the Oregon Highway Plan (OHP). The ODOT v/c targets are based on highway classification and posted speed. Mobility standards for roadways under Clatsop County are documented in the Clatsop County TSP in Volume 1.

Traffic Impact Analysis (TIA) Guidelines

Warrenton's development review process is designed to manage growth in a responsible and sustainable manner. By assessing the transportation impacts associated with land use proposals and requiring that adequate facilities be in place to accommodate those impacts, the City is able to maintain a safe and efficient transportation system concurrently with new development, diffusing the cost of system expansion.

Technical Memorandum #3 included a review of the Warrenton Development Code, that are needed to ensure and strengthen compliance with the state Transportation Planning Rule (OAR 660-012) and to help the transportation system serve planned growth. That review found that the existing development code already includes requirements for traffic impact analyses (TIAs) as part of development proposals. However, there are some recommended changes to consider.

First, it is recommended that the current number of new vehicle trips to trigger a TIA be reduced from

The development application involves a change in zoning or a plan amendment designation; or,

Transportation Standards Page | 22

- The development shall cause one or more of the following effects, which can be determined by field counts, site observation, traffic impact analysis or study, field measurements, crash history, Institute of Transportation Engineers Trip Generation Manual; and information and studies provided by the local reviewing jurisdiction and/or ODOT:
 - o An increase in site traffic volume generation by 300 average daily trips (ADT) or more; or
 - An increase in ADT hour volume of a particular movement to and from the state highway by 20% or more; or
 - An increase in use of adjacent streets by vehicles exceeding the 20,000-pound gross vehicle weights by 10 vehicles or more per day; or
 - The location of the access driveway does not meet minimum sight distance requirements, or is located where vehicles entering or leaving the property are restricted, or such vehicles queue or hesitate on the state highway, creating a safety hazard; or
 - A change in internal traffic patterns that may cause safety problems, such as back up onto the highway or traffic crashes in the approach area.

The Warrenton Development Code currently does not establish minimum content required in a TIA. It is recommended that the development code be amended to specify that the scope and content of the TIA be determined in consultation with the City Engineer.

It is recommended that Warrenton add approval criteria to existing TIA requirements, as well as an acknowledgement of transportation mitigation measures that may be required as conditions of approval in order to meet adopted mobility and safety standards. Mitigation measure provisions can address multimodal transportation improvements that may be required to mitigate impacts of the proposed development and protect the function and operation of the planned transportation system.

Intelligent Transportation System Coordination Guidelines

Two pieces of Intelligent Transportation System (ITS) equipment exist along US 101: a Highway Advisory Radio (HAR) Beacon Sign and a Variable Message Sign (VMS). The HAR Beacon is located just north of Dolphin Avenue and alerts northbound traffic to upcoming congestion with flashing lights. The VMS is just over a mile south of Warrenton. Although it is outside city limits, it provides alerts to northbound travelers on US 101.

Warrenton does not own or operate any ITS systems, or even traffic signals at this time. It is unlikely that the City of Warrenton will invest in ITS systems on its own, but there may be opportunities to work with regional partners on larger scale efforts that would benefit Warrenton residents. Such cooperation could range from agreements to share information and data or allow use of City right-of-way for regional ITS infrastructure.

For example, US 101 is a regional roadway facility that could benefit from transportation system management (TSM) infrastructure. Before future investments are made along this roadway designs should be reviewed with City and ODOT staff to determine if communications or other ITS infrastructure should be addressed as part of the street design/construction. The City should follow the Oregon Statewide ITS Plan for any projects that affect operations on state roadways.

Neighborhood Traffic Management Tools

Neighborhood Traffic Management (NTM) describes strategies that can be deployed to slow traffic, and potentially reduce volumes, creating a more inviting environment for pedestrians and bicyclists. NTM strategies are primarily traffic calming techniques for improving neighborhood livability on local streets, though a limited set of strategies can also be applied to collectors and arterials. Mitigation measures for neighborhood traffic impacts must balance the need to manage vehicle speeds and volumes with the need to maintain mobility, circulation, and function for service providers, such as emergency responders. Figure 11 includes a visual summary of common neighborhood traffic management strategies.

Figure 11: Summary of Neighborhood Traffic Management Strategies

Chicanes

Chokers

www.pedbikeimages.org/Dan Burden

www.pedbikeimages.org/Dan Burden

Median Islands

www.pedbikeimages.org/Carl Sundstrom

Raised Crosswalks

Diverters

www.pedbikeimages.org/Adam Fukushima

Speed Cushions

NACTO Urban Street Design Guide

www.pedbikeimages.org/Dan Burden

Speed Hump

www.pedbikeimages.org/Dan Burden

www.pedbikeimages.org/Tom Harned

Traffic Circles

www.pedbikeimages.org/Carl Sundstrom

Transportation Standards

Table 10 below lists common NTM applications. Any NTM project should include coordination with emergency response staff to ensure that public safety is not compromised. NTM strategies implemented on a state freight route, OR 126, will require input from ODOT regarding freight mobility considerations.

	Use by I	Function Classi	Impact		
NTM Application	Arterials	Collectors	Local Streets	Speed Reduction	Traffic Diversion
Chicanes			✓	\checkmark	~
Chokers			~	✓	~
Curb Extensions	~	~	~	✓	
Diverters		\checkmark	✓		\checkmark
(with emergency vehicle pass-through)					
Median Islands	~	✓	~	\checkmark	
Raised Crosswalks			~	✓	~
Speed Cushions			✓	\checkmark	\checkmark
(with emergency vehicle pass-through)					
Speed Hump			~	✓	~
Traffic Circles			✓	✓	✓

Table 10: Application of Neighborhood Traffic Management Strategies

The City of Warrenton currently does not have a formal neighborhood traffic management program. If such a program were desired to help respond to future issues, suggested elements include:

- Provide a formalized process for citizens who are concerned about the traffic on their neighborhood street. The process could include filing a citizen request with petition signatures and a preliminary evaluation. If the evaluation finds cause for concern, a neighborhood meeting would be held and formal data would be collected and evaluated. If a problem is found to exist, solutions would be identified and the process continued with neighborhood meetings, feedback from service and maintenance providers, cost evaluation, and traffic calming device implementation. Six months after implementation the device would be evaluated for effectiveness.
- For land use proposals, in addition to assessing impacts to the entire transportation network, traffic studies for new developments must also assess impacts to residential streets. A recommended threshold to determine if this additional analysis is needed is if the proposed project at ultimate buildout increases through traffic on any one residential street by 200 or more vehicles per day. Once the analysis is performed, the threshold used to determine if residential streets are impacted would be if their daily traffic volume exceeds 1,200 vehicles.

SECTION 11 TECH MEMO ELEVEN ALTERNATIVE MOBILITY TARGETS

MEMORANDUM #11

SUBJECT:	Warrenton Transportation System Plan Update Alternative Mobility Targets	P14180-008
FROM:	Angela Rogge, PE, David Evans and Associates, Inc. Shelly Alexander, PE, David Evans and Associates, Inc.	
TO:	Warrenton TSP Project Management Team	
DATE:	August 1, 2018	

Introduction

The Oregon Highway Plan (OHP) provides guidance for how transportation analysis and plans should be prepared, but ultimately leaves the responsibility for developing improvements and mobility standards to the plans themselves. In addition to the established mobility targets in the OHP, if it is found that adopted mobility targets cannot be achieved even with improvements that are reasonably likely to be in place by year the planning horizon year, alternative mobility targets can be developed as part of a transportation system plan. The alternative mobility targets are then considered the highway system performance standards in compliance with the Transportation Planning Rule (TPR) (OAR 660-012), including applicability for actions that fall under Section -0060 of the TPR.

As part of the Warrenton TSP Update process, findings from technical memoranda suggest the need for alternate mobility targets at select intersections along US 101. This memorandum will outline how US 101 serves the City of Warrenton, as well as its existing and forecasted traffic operations. Further discussion will highlight how the TSP can reasonably attempt to mitigate the capacity constraints, where alternate mobility targets are recommended, and what the mobility targets should be.

Background

Warrenton Travel Patterns

Warrenton has its own unique transportation identity. Being a close neighbor to Astoria, many people live in one community and work in the other. As summarized in *Technical Memorandum* #5, the majority of Warrenton residents actually work outside of the city. Conversely, approximately 80 percent of the people working in Warrenton commute from outside of the city limits. Most of these commuters travel US 101 for this purpose.

Warrenton is home to tourist destinations such as Fort Stevens State Park and the Peter Iredale site, as well as access to Oregon's coastline. Most of the visitors to Warrenton will travel through intersections along US 101, either to travel to and from town, or to popular commercial sites.

US 101 through Warrenton carries a high volume of freight traffic as it is a Federal Truck Route and the only freight route through the City. US 101 crosses over Youngs Bay and handles freight traffic to and from Astoria and the Port of Astoria, as well as other southern destinations.

Existing Roadway Network and Land Uses

Warrenton is surrounded by and includes significant areas of open space and natural resources. These resources are important to the economic vitality of the region and many areas are of historical significance due to their association with the Lewis and Clark Expedition. The current transportation network has limited opportunities to expand without impacts to the existing natural resources (wetlands, open space, recreation).

Commercial development is primarily concentrated in the downtown core along Fort Stevens Highway (OR 104) and US 101, including several regional or national chains such as Costco, Home Depot and Fred Meyer.

Traffic Analysis

The TSP analyzed six intersections along US 101 in Warrenton:

- E Harbor Drive at US 101
- US 101 at SE Neptune Drive
- US 101 at Marlin Drive
- OR 104S/Ft Stevens Hwy Spur at US 101
- SE Ensign Lane at US 101
- US 101 at SE Dolphin Avenue

Existing Mobility Targets

The City does not currently have a mobility target for its local streets; the project team anticipates reviewing mobility targets as part of the work involving updates to the City code. The traffic analysis relied on Clatsop County and ODOT mobility targets for evaluation of intersection operations.

For State facilities, the Oregon Highway Plan (OHP) and the Highway Design Manual (HDM) guide the assessment of intersection operations. Both documents base their mobility performance on the calculation of volume-to-capacity (v/c) ratios; however, the standards in the HDM are based on higher performance levels than those in the OHP. The mobility targets from the OHP are applicable to the existing and future baseline (no build) analysis.

Table 1. US 101 Mobility Targets

	Speed	ОНР	Signalized	Unsignalized Intersection		
Segment Limit Classification		Classification	Intersection	US 101	Side Street	
US 101: Youngs Bay Bridge to South of Ensign Ave	45 mph	Statewide Highway; Non-	0.80 v/c	0.80 v/c	0.90 v/c	
US 101: South of Ensign Ave to South City Limits	55 mph	OHP Freight Route; Non- MPO; Inside UGB	0.80 v/c	0.80 v/c	0.90 v/c	

Source: Oregon Highway Plan (OHP), Policy 1F, Table 6

Existing and Future Conditions

The traffic analysis evaluated two sets of volumes (30th Highest Hour/Summer and Average Weekday) in anticipation of the need for alternate mobility targets. Typical ODOT traffic methodology uses the 30th highest hour volumes for analysis. Table 2 summarizes the results of the operational analysis.

		Average Weekday			30 th	Highest H	Iour (Sum	mer)	
		Ma	jor	Mir	nor	Ma	ajor	Mi	nor
Year	Intersection	V/C 1,2	LOS ²	V/C ^{1,2}	LOS ²	V/C 1,2	LOS ²	V/C 1,2	LOS ²
	Unsignalized Intersections								
	OR 104S/Ft Stevens Hwy Spur at US 101	0.01	А	0.01	В	0.03	В	0.02	С
015	US 101 at SE Dolphin Ave	0.03	А	0.14	В	0.05	А	0.26	С
о С	Signalized Intersections								
Existing	E Harbor Dr at US 101	Ove	erall	0.80	С	Ov	Overall		D
	US 101 at SE Neptune Dr	Overall		0.67	С	Overall		0.85	С
	US 101 at Marlin Dr	Overall		0.64	С	Overall		0.99	D
	SE Ensign Ln at US 101	Overall		0.77	D	Overall		0.95	F
	Unsignalized Intersections								
	OR 104S/Ft Stevens Hwy Spur at US 101	0.02	В	0.04	С	0.03	В	0.09	D
(0)	US 101 at SE Dolphin Ave	0.09	А	0.43	С	0.16	В	0.86	F
(20	Signalized Intersections								
ure	E Harbor Dr at US 101	Ove	erall	0.89	С	Ov	erall	1.23	Е
Fut	US 101 at SE Neptune Dr	Ove	erall	0.76	С	Ov	erall	1.08	Е
	US 101 at Marlin Dr	Ove	rall	0.88	С	Ov	erall	1.23	F
	SE Ensign Ln at US 101	Ove	rall	0.90	F	Ov	erall	1.16	F

Table 2. Existing (Year 2015) and Future (Year 2040) PM Peak Hour Traffic Operations Analysis Results

Acronyms: EB = eastbound; WB = westbound; NB = northbound; and SB = southbound. L = left; T = through; and R = right.

SHADED cells indicate the movement fails to meet applicable mobility target

1. At intersections the results are reported for the worst operating movements on major and minor approaches that must stop or yield the right of travel to other traffic flows.

2. The v/c ratios and LOS are based on the results of the macrosimulation analysis using Synchro, which cannot account for the influence of adjacent intersection operations.

3. Mobility target is reported for the critical movement; Unsignalized intersections may have two different mobility targets for the major and minor approaches (Action 1F.1, Oregon Highway Plan, 1999)

Source: David Evans and Associates, Inc.

The analysis concluded the following for intersections along US 101:

- In 2015:
 - Average weekday: One intersection is at the mobility target threshold (at E Harbor Dr)
 - 30th Highest Hour (Summer): All four signalized intersections along US 101 in Warrenton are expected to exceed applicable mobility targets.
- In 2040:
 - Average weekday: Three signalized intersections are expected to exceed the mobility target (at E Harbor Drive, Marlin Drive and Ensign Lane)
 - 30th Highest Hour (Summer): All signalized intersections along US 101 in Warrenton are expected to exceed applicable mobility targets.

Mitigation

As part of the TSP Update, projects were developed to address mobility concerns under 30th highest hour (summer) conditions (see *Technical Memorandum* #8).

The first step was to evaluate the intersections exceeding a v/c of 1.0 under the 30^{th} highest hour (summer) no build conditions using a PHF of 1.0. The result of adjusting the PHF was that the intersections were still expected to operate above a v/c of 1.0 (see Table 3).

The consultant team determined the level of improvement that would be required to meet OHP mobility targets. A summary of projects specific to US 101 and their resulting operations are summarized below in Table 3.

Table 3. Improvements to Meet OHP Mobility Target - 30th Highest Hour (Summer)

Intersection	Improvement	No Build v/c ¹	Mitigated v/c
E Harbor Dr at US 101	Add 2nd NBT lane		
	 Convert dedicated SBR to a SBTR 	1 20	0.76
	 Add 2nd EBL turn lane (eliminate WBL to private 	1.20	0.70
	business)		
US 101 at SE Neptune Dr	 Add 2nd NBT lane 	1.01	0.67
	 Convert dedicated SBR to a SBTR 	1.01	0.07
US 101 at Marlin Dr	Add 2nd NBT lane	1 16	0.74
	• Add 2nd SBT lane	1.10	0.74
SE Ensign Ln at US 101	Add 2nd EBL turn lane		
	• Add 2nd EBT lane (shared EBTR)	1 11	0.78
	Add 2nd SBL turn lane	1.11	0.70
	Add dedicated SBR turn lane		

Note: No Build operational analysis results reflect a PHF of 1.0

Significant capital investment would have to occur to fix a capacity problem that is most noticeable during the summer tourist season. The extent of the improvements listed in Table 3 are not necessary under average weekday conditions.

To meet mobility targets for the 30th highest hour, US 101 would have to be widened to a five-lane cross-section from the Youngs Bay Bridge south through Marlin Drive. This type of improvement would likely result in impacts to natural resources (wetland) and require a level of funding that is not anticipated within the forecasting horizon (2040). Also of note, unless the Youngs Bay bridge is widened to four lanes, the capacity improvements through Warrenton would likely result in congestion at the transition to the bridge structure.

The intersection of Ensign Lane at US 101 is expected to continue to exceed mobility targets for the summer peak conditions unless improvements are constructed that would require the widening of Ensign on both sides of US 101. This widening would likely result in impacts to existing businesses and require the reconstruction of an intersection that has recently been improved.

In summary, there are financial and environmental barriers to mitigating to the OHP mobility target:

- Mitigation would require widening of US 101 to a five-lane cross-section from the Youngs Bay Bridge south through Marlin Drive, which has potential wetland impacts and modifying three signalized intersections.
- Regional bottleneck would remain with a two-lane Youngs Bay Bridge between Warrenton and Astoria
- Capacity improvements to SE Ensign Lane would reconstruct an intersection that has recently been improved.
- Widening of side streets could require right-of-way acquisitions.
- The improvements necessary to mitigate to the current OHP mobility target would result in the average weekday traffic utilizing only 50-65% of the available intersection capacity.

Alternative Mobility Targets

Per OHP Policy 1F.3, local jurisdictions may explore alternative mobility targets if it "is infeasible or not practical to meet the existing performance targets through the development of transportation system plans". The OHP specifically identifies facilities with high seasonal traffic as an example of where state mobility targets may not match the local expectations for a specific facility. As previously mentioned, traffic volumes on US 101 through Warrenton suffer from summer seasonal peaking.

Alternative Mobility Target Process

As discussed in the previous sections, the project team followed the process outlined in Figure 1 to determine the appropriate alternative mobility targets. The results of each step of the process are summarized below.

Step 1: None of the four signalized study intersections along US 101 would be expected to meet existing OHP mobility targets during the summer of 2040, after recommended improvements described earlier. To be compliant, Warrenton would need alternative mobility targets for all of the four signalized study intersections along US 101.

Step 2: None of the four signalized intersections would be expected to operate below a v/c ratio of 1.0 during the summer of 2040.

Step 3: None of the four signalized intersections would be expected to operate below a v/c ratio of 1.0during the summer of 2040 after assuming a peak hour factor of 1.0.

Step 4: All of the four signalized intersections would be expected to operate below a v/c of 1.0 during the average weekday peak hour in 2040. Thus, an average weekday target is recommended.

Figure 1. Alternative Mobility Target Process

Proposed Alternative Mobility Target

Adopting an alternative analysis methodology for US 101 through Warrenton and an alternative mobility target value accomplishes two objectives:

- 1. Sets a financially and operationally realistic expectation for highway improvements and related traffic conditions within this corridor segment which acknowledge that ODOT will not be able to construct enough capacity on US 101 to avoid or alleviate congestion during summer months.
- 2. Simplifies future analysis efforts if a land use or zoning change proposal is made that impacts US 101.

The analysis process determined that under 30th highest hour (summer) conditions and a PHF of 1.0, the v/c ratios for all signalized intersections on US 101 are expected to exceed 1.0 by 2040. This is why we suggest an average weekday analysis. The project team then evaluated potential v/c targets of 0.80, 0.85 and 0.90. A v/c target of 0.85 was selected because 0.90 would not trigger any improvements and 0.80 would require capacity improvements with little benefit for the cost.

Using the alternative methodology allows the alternative mobility target value to reference a v/c ratio target of less than or equal to 0.85. This adjustment eliminates the need to analyze the extent to which at-capacity (v/c ratio > 1.0) operations would last longer than one peak hour (as done in the Portland Metro area).

Based on the findings of the traffic analysis, the project team suggests a request of the OTC for the following:

- An alternative mobility target analysis methodology for the segment of US 101 through Warrenton, specifying that future traffic analysis will be based on annual average weekday volumes rather than the ODOT standard analysis methodology that uses 30th highest hour volumes;
- An alternative mobility target of 0.85, based on the annual average weekday analysis methodology, as the alternative mobility target for signalized intersections with US 101 through Warrenton.

Intersection	Improvement	No Build v/c	Mitigated v/c
E Harbor Dr at US 101	 Add 2nd EBL turn lane (eliminate WBL to private business) 	0.89	0.75
US 101 at SE Neptune Dr	• None	0.76	N/A
US 101 at Marlin Dr	Install flashing yellow NBL and SBL	0.88	0.84
SE Ensign Ln at US 101	• Increase cycle length from 100 sec to 120 sec	0.90	0.82

Table 4. Improvements to Meet Proposed Alternative Mobility Target - Average Weekday

SECTION 12 TECH MEMO TWELVE IMPLEMENTING ORDINANCES

DRAFT TECHNICAL MEMORANDUM #12

DATE:	August 27, 2018	PMT REVIEW DRAFT
TO:	Warrenton TSP Project Management Team	
FROM:	Darci Rudzinski, Angelo Planning Group	
SUBJECT	: Warrenton Transportation System Plan Task 6.4, Technical Memorandum #12, Implementing	Ordinances

Purpose and Organization

Pursuant to Task 6.4, the purpose of this memorandum is to propose amendments to the City of Warrenton Comprehensive Plan and to the Development Code. The proposed amendments are intended to implement the goals and strategies of the draft Warrenton Transportation System Plan (TSP) and ensure compliance with the Transportation Planning Rule (TPR). More broadly, the intent of the amendments is to ensure that the City's policies and development requirements provide sufficient guidance to ensure that future decisions and land use actions are consistent with the planned transportation system.

The first section of the memorandum explains the City's approach to updating transportation policies in the Warrenton Comprehensive Plan. The second section of the memorandum provides recommended Development Code amendments (Table 1).

Policy Amendments

Currently, both the City's adopted TSP and Comprehensive Plan (Article 8 Transportation) contain transportation policies, with the standards in the TSP prevailing where conflicts between adopted policies exist. The City's updated TSP includes goals and objectives to guide future transportation system planning. As explained in Technical Memorandum #4, Goals, Objectives, and Evaluation Criteria, each new capital improvement project, land use application, or implementation measure must be consistent with the objectives. The TSP update anticipated that, once adopted, the goals and objectives will become part of Warrenton's Comprehensive Plan. The City is proposing to replace Comprehensive Plan Article 8 in its entirety with the following text referencing the 2018 TSP:

In 2015 the City of Warrenton began a planning project to replace the City's 2004 Transportation System Plan and to prepare associated land use ordinances. The primary objective of the project was to describe and document a new baseline condition for the City's multi-modal transportation system and to identify transportation improvements based on a 2035 planning horizon. This project was informed by several studies and plans that had

Page | 1

Technical Memorandum #12 – Implementing Ordinances

been conducted and completed since the 2004 TSP was adopted, including the Warrenton Downtown and Marina Master Plans (2010), Warrenton Parks Master Plan (2010), and Warrenton Trails Master Plan (2008). The TSP update was needed to ensure consistency and further the outcomes of these and other adopted plans, as well as to plan for the community's future transportation system needs. In addition to roadway needs, the project also focused on a full evaluation of the bicycle and pedestrian systems, with special attention on identifying new and enhanced local routes and connections to the regional trail system. The resulting multi-modal plan includes project lists with recommended and prioritized system improvements based on reasonable funding forecasts for the next 20 years. The City will rely on the TSP's update street-functional classifications and cross-section standards to ensure that future investments meet community needs.

The 2018 Transportation System Plan serves as the Transportation element of the City's Comprehensive Plan; additional information, including forecasted future transportation needs, roadway functional classifications, and transportation facility standards can be found in the TSP document.

Development Code Amendments

This section of the memorandum provides recommended changes to the City's development requirements, based on an audit and analysis of the Development Code (Title 16 of the Warrenton Municipal Code).¹ Proposed amendments to development requirements are intended to both implement the goals and policies of the draft TSP and to ensure consistency with the Transportation Planning Rule (TPR). Table 1 presents each recommendation, a reference to the relevant code section(s), and a reference to the relevant TPR section(s).

Proposed changes to the Development Code are found in the following:

Division 2 Land Use Districts

- Chapter 16.40 General Commercial (C-1) District
- Chapter 16.44 Commercial Mixed Use (C-MU) District

Division 3 Design Standards

- Chapter 16.120 Access and Circulation
- Chapter 16.128 Vehicle and Bicycle Parking
- Chapter 16.136 Public Facilities Standards

¹ See Technical Memorandum #3, Regulatory Review, October 14, 2015.

Division 4, Applications and Review Procedures

- Chapter 16.208 Types of Applications and Review Procedures
- Chapter 16.232 Amendments to Comprehensive Plan Text and Map, Rezone, and Development Code

Attachment A provides the implementing code language related to each numbered recommendation in Table 1.

Table I: Recommended Development Code Amendments					
Re	commendation	Development Code Reference	Draft TSP Goal and TPR References		
1.	Establish new transit-related building setback standards. As recommended in Sunset Empire Transit District Long Range Comprehensive Transportation Plan, modified code language establishes maximum setbacks for buildings in commercial districts, adjacent to transit stops.	Section 16.40.050 Design Standards Section 16.44.040 Development Standards	OAR 660-012-0045(4)		
2.	Revise access management standards for consistency with the updated TSP. Currently, the Development Code refers to access spacing standards in the TSP. The draft TSP is recommending adding "major" and "minor" arterials and collectors to the street classification system. Classifications are mapped on Figure X of the TSP; the plan does not have a list of City streets with their classifications, as suggested by current Development Code. Block length standards are also in the Vehicular Access and Circulation section of the Development Code. Recommended modifications reduce maximum block length standards in zoning districts that may be more urban in nature and where transit corridors are currently located or may be located in the future.	Section 16.120.020 Vehicular Access and Circulation	OAR 660-012-0045(2)(a)		
3.	Add requirements to connect to transit stops. While pedestrian access and circulation standards require that proposed development provides for non-motorized connections on site, current requirements do not include transit stops. Proposed language will allow for enhanced connections to transit as part of proposed developments near planned or existing stop.	Section16.120.030 Pedestrian Access and Circulation	OAR 660-012-0045(3)(b)		
4.	Allow parking area redevelopment for transit- related improvements; add requirements for carpool and vanpool parking; and establish maximum parking standards in specified situations. Proposed changes would allow existing parking areas to be redeveloped for transit-oriented uses, provided that minimum parking requirements can still be met. In addition, proposed text amendments would require larger off-street parking lots to include preferential parking for carpools and vanpools in designated employee parking areas and would cap parking in commercial districts and adjacent to transit	Section 16.128.030 Vehicle Parking Standards	OAR 660-012-0045(4)(e) OAR 660-012-0045(4)(d)		

Table I: Recommended Development Code Amendments				
Re	commendation	Development Code Reference	Draft TSP Goal and TPR References	
	stops. Proposed code language was developed as part of the Sunset Empire Transit District Long Range Comprehensive Transportation Plan.			
5.	Allow parking reductions through a variance procedure. Proposed code modifications will allow the Planning Director to approve a modification in required vehicular parking spaces for development that is well served by transit or provides infrastructure for modes other than the single-occupancy vehicle. Amendments include minor changes to the City's existing restrictions regarding parking in the required setbacks. Proposed code language was developed as part of the Sunset Empire Transit District Long Range Comprehensive Transportation Plan.	Section 16.128.030 Vehicle Parking Standards	OAR 660-012-0045 (4)	
6.	Update bicycle parking standards. Currently, the code requires bicycle parking for multi-family housing, schools and public or private parking lots. Proposed amendments would expand bicycle parking requirements to commercial, school, and transit uses. The proposed new table specifies the short- and long- term bicycle requirements for various land uses. Proposed code language was developed as part of the Sunset Empire Transit District Long Range Comprehensive Transportation Plan.	Section 16.128.040 Bicycle Parking Requirements	OAR 660-012-0045(3)(a)	
7.	Update street design standards . Street design standards based on street classifications have been revised in the updated TSP. The recommendation is to replace Table 16.136.010 City of Warrenton Street Design Standards with a reference to the standards in the TSP. The list of factors on which to grant deviations from minimum standards can also be eliminated from the code, as the draft TSP includes proposed "considerations" for granting "Alternative Minimum Standards" for each roadway classification.	Section 16.136.020 Transportation Standards Table 16.136.010 City of Warrenton Street Design Standards	OAR 660-012-0045(7)	
8.	Establish new transit stop improvement requirements. Proposed Chapter 16.204, Transit Access and Supportive Facilities includes access and improvement requirements for development that is proposed adjacent to an existing or planned transit stop. Proposed code language was developed as part of the Sunset Empire Transit District Long Range Comprehensive Transportation Plan.	[New] Chapter 16.204	OAR 660-012-0045(3)(b), OAR 660-012-0045(4)(a), (b), (f)	

Table I: Recommended Development Code Amendments				
Recommendation		Development Code Reference	Draft TSP Goal and	
			TPR References	
9.	Expand notice requirements to transportation	Section 16.208.040	OAR 660-012-0045(1)(d)	
	agencies. Recommended changes ensure that	Type II Procedure	OAR 660-012-0045(2)(f)	
	transportation agencies are provided noticed of	(Administrative)		
	proposals that may have a significant impact on a			
	facility (or service) under their jurisdiction are to	Section 16.208.050		
	and application review. Proposed code language was	Ludicial		
	developed as part of the Sunset Empire Transit District	Juciciai).		
	Long Range Comprehensive Transportation Plan.	Section 16.208.070		
	Long tunge comprehencive transportation tank	General Provisions		
10.	Update TPR "significant effect" citation. TPR	Section 16.232.060	OAR 660-012-0060	
	Section -0060 was updated in 2012. Current			
	Development Code language reflects the outdated State			
	language and needs to be updated. The proposed			
	amendment references the TPR, rather than including			
44	language from the Rule.	44 05 4 0 D		
11.	Update Traffic Impact Study (TIS) requirements.	16.256.010 Purpose	OAR $660-012-0045(2)(b)$	
	Recommendations include replacing the Division 51	16.256.030 When Required	OAR 660-012-0045(2)(g) $OAP 660.012.0045(3)(c)$	
	applications) with local preparation requirements	Requirements	OAR 000-012-0043(3)(C)	
	Additions include approval criteria (new Section	Newl Section 16 256 050		
	16.256.050) and a section that codifies the City's ability	Approval Criteria		
	to condition approval to provide for needed	[New] Section 16.256.060		
	transportation improvements.	Conditions of Approval		

APPENDIX A: PROPOSED CODE AMENDMENTS

<u>Underlined bolded</u> text is new, strikeout is current text to be removed from adopted development code language.

Recommendation I: Establish new transit-related building setback standards.

16.40.040 Development Standards.

[...]

- B. Setback Requirements.
 - 1. Minimum front yard setback, commercial uses: none except where adjoining a residential zone, in which case it shall be 15 feet. See Section 16.40.050 for maximum front yard setback for commercial uses.

[...]

16.40.050 Design Standards.

The following design standards are applicable in the C-1 zone:

- A. Any commercial development shall comply with Chapter 16.116 of the Development Code.
- B. Lots fronting onto U.S. Highway 101 shall have a setback of at least 50 feet between any part of the proposed building and the nearest right-of-way line of U.S. Highway 101.
- C. Signs in General Commercial Districts along Fort Stevens Highway/State Highway 104 (i.e., S. Main Avenue, N. Main Avenue, NW Warrenton Drive, and Pacific Drive) shall comply with the special sign standards of Section 16.144.040.
- D. Maximum front yard setback for commercial buildings in the C-1 zone along Fort Stevens Highway/State Highway 104 shall be 10 feet.
- E. Maximum front yard setback for commercial buildings in the C-1 zone adjacent to existing or planned transit stops shall be 10 feet.

1. The Community Development Director may allow a greater front yard setback when the applicant proposes extending an adjacent sidewalk or plaza for public use, or some other pedestrian amenity is proposed between the building and public right-ofway, subject to Site Design approval.

16.44.040 Development Standards.

The following development standards are applicable in the C-MU district:

[...]

- B. Setback Requirements (Residential and Multiple Uses).
 - 1. Minimum front yard setback: 15 feet (Residential); none (Multiple Uses).
 - 2. Minimum side yard setback: 8 feet.
 - 3. Minimum corner lot street side yard setback: 8 feet.
 - 4. Minimum rear yard setback: 15 feet except accessory structures that meet the criteria of Section 16.280.020 may extend to within five feet of a rear property line.
 - 5. Maximum front yard setback: 10 feet for Multiple Uses adjacent to existing or planned transit stops.
 - a. The Community Development Director may allow a greater front yard setback when the applicant proposes extending an adjacent sidewalk or plaza for public use, or some other pedestrian amenity is proposed between the building and public right-of-way, subject to Site Design approval.
- C. Setback Requirements (Commercial Uses).
 - 1. Minimum front yard setback: none.
 - 2. Minimum side yard setback: None except where adjoining a residential zone in which case there shall be a visual buffer strip of at least 10 feet wide to provide a dense evergreen landscape buffer which attains a mature height of at least eight feet. Such buffers must conform to the standards in Chapter 16.124, Landscaping, Street Trees, Fences and Walls.
 - 3. Minimum rear yard setback: None except where adjoining a residential zone in which case there shall be a visual buffer strip of at least 10 feet wide to provide a dense evergreen landscape buffer which attains a mature height of at least eight feet. Such buffers must conform to the standards in Chapter 16.124, Landscaping, Street Trees, Fences and Walls.
 - 4. Maximum front yard setback: 10 feet for Commercial Uses adjacent to existing or planned transit stops.
 - a. The Community Development Director may allow a greater front yard setback when the applicant proposes extending an adjacent sidewalk or plaza for public use, or some other pedestrian amenity is proposed between the building and public right-of-way, subject to Site Design approval.

Recommendation 2: Revise access management standards.

16.120.020 Vehicular Access and Circulation.

- G. <u>Access Spacing</u>. Driveway accesses shall be separated from other driveways and street intersections in accordance with the following standards and procedures:
- [...]
 - 2. Arterial and Collector Streets. Unless directed otherwise by this Development Code or by the Warrenton Comprehensive Plan/TSP, access spacing on City collector and arterial streets (see Warrenton Comprehensive Plan and TSP for a list of City collector and arterial streets) and at controlled intersections (i.e., with four-way stop sign or traffic signal) in the City of Warrenton shall be determined based on the policies and standards contained in the

Warrenton Transportation System Plan, Manual for Uniform Traffic Control Devices, or other applicable documents adopted by the City.

[...]

- J. <u>Street Connectivity and Formation of Blocks Required</u>. In order to promote efficient vehicular and pedestrian circulation throughout the City, land divisions and large site developments shall produce complete blocks bounded by a connecting network of public and/or private streets, in accordance with the following standards:
 - Block Length and Perimeter. The maximum block length shall not exceed <u>600 feet</u> 1,000 feet between street corner lines <u>in Residential and C-1 zones</u>, 400 feet in the C-MU zone, and 1,000 feet in other zones unless it is adjacent to an arterial street or unless the topography or the location of adjoining streets justifies an exception. The minimum length of blocks along an arterial <u>in zones other than Residential</u>, C-1, and C-MU is 1,800 feet. A block shall have sufficient width to provide for two tiers of building sites unless topography or location of adjoining streets justifies an exception.

Recommendation 3: Add Requirements to connect to transit stops.

16.120.030 Pedestrian Access and Circulation.

- A. Pedestrian Access and Circulation.
 - 2. <u>Safe, Direct, and Convenient Pathways</u>. Pathways within developments shall provide safe, reasonably direct and convenient connections between primary building entrances and all adjacent streets <u>and existing or planned transit stops</u>, based on the following definitions:
 - a. <u>Reasonably Direct</u>. A route that does not deviate unnecessarily from a straight line or a route that does not involve a significant amount of out-of-direction travel for likely users.
 - b. <u>Safe and Convenient</u>. Bicycle and pedestrian routes that are reasonably free from hazards and provide a reasonably direct route of travel between destinations.
 - c. For commercial, industrial, mixed use, public, and institutional buildings, the "primary entrance" is the main public entrance to the building. In the case where no public entrance exists, street connections shall be provided to the main employee entrance.
 - d. For residential buildings the "primary entrance" is the front door (i.e., facing the street). For multifamily buildings in which each unit does not have its own exterior entrance, the "primary entrance" may be a lobby, courtyard or breezeway which serves as a common entrance for more than one dwelling.

Recommendation 4: Allow parking area redevelopment for transitrelated improvements; add requirements for carpool and vanpool parking; and establish maximum parking requirements in specified situations.

16.128.030 Vehicle Parking Standards.

At the time a structure is erected or enlarged, or the use of a structure or parcel of land is changed within any zone in the City, off-street parking spaces shall be provided in accordance with requirements in this section, chapter, and Code, unless greater requirements are otherwise established. The minimum number of required off-street vehicle parking spaces (i.e., parking that is located in parking lots and garages and not in the street right-of-way) shall be determined based on the standards in Table 16.128.030.A.

A. General Provisions.

[...]

- 7. Parking spaces and parking areas may be used for transit related uses such as transit stops and park-and-ride/rideshare areas, provided minimum parking space requirements can still be met.
- 8. Parking areas that have designated employee parking and more than 20 automobile parking spaces shall provide at least 10% of the employee parking spaces (minimum two spaces) as preferential carpool and vanpool parking spaces. Preferential carpool and vanpool parking spaces shall be closer to the employee entrance of the building than other parking spaces, with the exception of ADA accessible parking spaces.
- 9. Sites that are adjacent to existing or planned transit stops or are in the General <u>Commercial (C-1) and Commercial Mixed Use (C-MU) districts are subject to</u> <u>maximum off-street vehicle parking requirements. The maximum number of off-</u> <u>street vehicle parking spaces allowed per site shall be equal the minimum number of</u> <u>required spaces, pursuant to Table 16.128.030.A, multiplied by a factor of:</u>
 - a. 1.2 spaces for uses fronting a street with adjacent on-street parking spaces; or
 - b. 1.5 spaces, for uses not fronting a street with adjacent on-street parking; or
 - c. A factor determined according to a parking analysis prepared by a qualified professional/registered engineer and submitted by the applicant.

Recommendation 5: Allow parking reductions through a variance procedure.

10. The applicant may propose a parking space standard that is different than the
standard in Table 16.128.030.A, for review and action by the Community
Development Director through a variance procedure, pursuant to Chapter 16.272.
The applicant's proposal shall consist of a written request, and a parking analysis

prepared by a qualified professional/registered engineer. The parking analysis, at a minimum, shall assess the average parking demand and available supply for existing and proposed uses on the subject site; opportunities for shared parking with other uses in the vicinity; existing public parking in the vicinity; transportation options existing or planned near the site, such as frequent transit service, carpools, or private shuttles; and other relevant factors.

[City: Do you want changes/reductions to parking standards to require a variance procedure and professional parking analysis, per passages above, or to be made by the CDD simply determining consistency with the following criteria?]

<u>The Community Development Director may reduce the off-street parking standards</u> <u>for sites with one or more of the following features:</u>

- a. Site has a transit stop with existing or planned frequent transit service (30-minute headway or less) located adjacent to it, and the site's frontage is improved with a transit stop shelter, consistent with the standards of the applicable transit service provider: Allow up to a 20 percent reduction to the standard number of automobile parking spaces;
- **b.** Site has dedicated parking spaces for carpool/vanpool vehicles: Allow up to a 10 percent reduction to the standard number of automobile parking spaces;
- c. Site has dedicated parking spaces for motorcycle and/or scooter or electric carts: Allow reductions to the standard dimensions for parking spaces and the ratio of standard to compact parking spaces;
- d. Available on-street parking spaces adjacent to the subject site in amounts equal to the proposed reductions to the standard number of parking spaces.
- e. Site has more than the minimum number of required bicycle parking spaces: Allow up to 10 percent reduction to the number of automobile parking spaces.

B. Parking Location and Shared Parking.

- Location. Vehicle parking is allowed only on approved parking shoulders (streets), within garages, carports and other structures, or on driveways or parking lots that have been developed in conformance with this Code. <u>Parking and loading areas shall not be located in required yards adjacent to a street unless otherwise specifically permitted in this ordinance.</u> [City: Specify this in the C-1 and C-MU districts, other districts, and/or adjacent to a street may be used for such areas when developed and maintained as required in this ordinance. Specific locations for parking are indicated in Division 2 for some land uses (e.g., the requirement that parking be located to side or rear of buildings, with access from alleys, for some uses). See also Chapter 16.120, Access and Circulation.
- 2. Off-Site Parking. Except for single-family, two-family, and three-family dwellings, the vehicle parking spaces required by this chapter may be located on another parcel of land, provided the parcel is within 200 feet or a reasonable walking distance of the use it serves. The distance from the parking area to the use shall be measured from the nearest parking space to a building entrance, following a sidewalk or other pedestrian route. The right to

use the off-site parking must be evidenced by a recorded deed, lease, easement, or similar written instrument.

Recommendation 6: Update bicycle parking standards.

Bicycle Parking

16.128.040 Bicycle Parking Requirements.

- A. All uses shall provide bicycle parking in conformance with the following standards which are evaluated during development review or site design review.
- B. Number of Bicycle Parking Spaces. <u>The minimum number of bicycle parking spaces</u> required for uses is provided in Table 16.128.040.A. A minimum of two bicycle parking spaces per use is required for all uses with more than 10 vehicle parking spaces. The following additional standards apply to specific types of development:
 - Multifamily Residences. Every residential use of four or more dwelling units provides at least one sheltered bicycle parking space for each dwelling unit. Sheltered bicycle parking spaces may be located within a garage, storage shed, basement, utility room or similar area. In those instances in which the residential complex has no garage or other easily accessible storage unit, the bicycle parking spaces may be sheltered from sun and precipitation under an eave, overhang, an independent structure, or similar cover.
 - 2. Parking Lots. All public and commercial parking lots and parking structures provide a minimum of one bicycle parking space for every 10 motor vehicle parking spaces, with a maximum of 28 bicycle parking spaces per commercial lot.
 - 3. Schools. Elementary and middle schools, both private and public, provide one bicycle parking space for every 10 students and employees. High schools provide one bicycle parking space for every five students and employees. All spaces should be sheltered under an eave, overhang, or bicycle shelter.

Where an application is subject to Conditional Use Permit approval or the applicant has requested a reduction to the vehicle parking standard, pursuant to 16.128.030(A)(10), the City may require bicycle parking spaces in addition to those in Table 16.128.040.A.

<u>Table 16.128.040.A</u> <u>Bicycle Parking Requirements</u>

<u>Minimum Requ</u>	Long and Short Term Bicycle Parking	
<u>Use</u>	Minimum Number of Spaces	(As % of Minimum Required Bicycle Parking Spaces)
Multifamily Residential	2 spaces per 4 dwelling units	75% long term
(required for 4 or more dwelling units)		25% short term
<u>Commercial</u>	2 spaces per primary use or 1 per 5 vehicle spaces, whichever is greater	25% long term 75% short term
Schools (all types)	2 spaces per classroom	100% long term
Parks (active recreation areas only)	4 spaces	100% short term
Transit Stops	2 spaces	100% short term
Transit Centers	4 spaces or 1 per 10 vehicle spaces, whichever is greater	50% long term 50% short term
Other Uses	2 spaces per primary use or 1 per 10 vehicle spaces, whichever is greater	50% long term 50% short term

Table 16.128.040.A Bicycle Parking Requirements

C. Design and Location.

- 1. All bicycle parking shall be securely anchored to the ground or to a structure.
- 2. All bicycle parking shall be well lighted.
- 3. All bicycle parking shall be designed so that bicycles may be secured to them without undue inconvenience, including being accessible without removing another bicycle. [City: The following is an option in providing more specific guidance regarding bicycle parking design if desired to supplement this more general language. Keep general (above) or specific (following) language?] Bicycle parking spaces shall be at least six (6) feet long and two-and-one-half (2 ½) feet wide, and overhead clearance in covered spaces should be a minimum of seven (7) feet. A five (5) foot aisle for bicycle maneuvering

should be provided and maintained beside or between each row/rack of bicycle parking.

- 4. Bicycle parking racks shall accommodate locking the frame and both wheels using either a cable or U-shaped lock.
- 5. Direct access from the bicycle parking area to the public right-of-way shall be provided at-grade or by ramp access, and pedestrian access shall be provided from the bicycle parking area to the building entrance.
- 6. Bicycle parking shall not impede or create a hazard to pedestrians or vehicles and shall not conflict with the vision clearance standards of Chapter 16.132.
- 7. All bicycle parking should be integrated with other elements in the planter strip when in the public right-of-way.
- 8. Short-term bicycle parking.
 - a. Short-term bicycle parking shall consist of a stationary rack or other approved structure to which the bicycle can be locked securely.
 - b. If more than 10 short-term bicycle parking spaces are required, at least 50% of the spaces must be sheltered. Sheltered short-term parking consists of a minimum 7-foot overhead clearance and sufficient area to completely cover all bicycle parking and bicycles that are parked correctly. c. Short-term bicycle parking shall be located within 50 feet of the main building entrance or one of several main entrances, and no further from an entrance than the closest automobile parking space.
- 9. Long-term bicycle parking. Long-term bicycle parking shall consist of a lockable enclosure, a secure room in a building onsite, monitored parking, or another form of sheltered and secure parking.
- D. Exemptions. This Section does not apply to single-family and duplex housing, home occupations, and agricultural uses. The City may exempt other uses upon finding that, due to the nature of the use or its location, it is unlikely to have any patrons or employees arriving by bicycle.
- E. Hazards. Bicycle parking shall not impede or create a hazard to pedestrians or vehicles and shall be located so as to not conflict with the vision clearance standards of Chapter <u>16.132.</u>

Recommendation 7: Update street design standards.

- 16.136.020 Transportation Standards.
- F. <u>Minimum Rights-of-Way and Street Sections</u>. Street rights-of-way and improvements shall conform to the design standards in Table 16.136.010 the City of Warrenton Transportation <u>System Plan</u>. A variance shall be required in accordance with Chapter 16.272 of this Code to vary the <u>adopted</u> standards in Table 16.136.010 the Transportation System Plan. Where a

range of width is indicated, the width shall be determined by the decision-making authority based upon the following factors:

- 1. Street classification in the Transportation System Plan or Comprehensive Plan;
- 2. Anticipated traffic generation;
- 3. On-street parking needs;
- 4. Sidewalk and bikeway requirements based on anticipated level of use;
- 5. Requirements for placement of utilities;
- 6. Street lighting;
- 7. Street tree location, as provided for in Chapter 16.124;

8. Protection of significant vegetation and wetland and riparian areas, as provided for in Chapters 16.124 and 16.156;

9. Safety and comfort for motorists, bicyclists, and pedestrians;

10. Street furnishings (e.g., benches, lighting, bus shelters, etc.), when provided;

11. Access needs for emergency vehicles; and

12. Transition between different street widths (i.e., existing streets and new streets), as applicable.

Table 16.136.010

City of Warrenton Street Design Standards

[Table to be deleted.]

[...]

- J. Sidewalks, Planter Strips, Bicycle Lanes. Sidewalks, planter strips, and bicycle lanes shall be installed in conformance with the standards in Table 16.136.010, applicable provisions of the Transportation System Plan, the Comprehensive Plan, and applicable provisions in the adopted street plans. Maintenance of sidewalks, curbs, and planter strips is the continuing obligation of the adjacent property owner.
- R. Alleys, Public or Private. Alleys shall conform to the standards in Table 16.136.010 the <u>Transportation System Plan</u>. While alley intersections and sharp changes in alignment shall be avoided, the corners of necessary alley intersections shall have a radius of not less than 12 feet.
- S. Private Streets. Private streets shall not be used to avoid connections with public streets. Gated communities (i.e., where a gate limits access to a development from a public street) are prohibited. Design standards for private streets are the same as design standards for public

streets and shall conform to the provisions of Table 16.136.010 in the Transportation System Plan.

Recommendation 8: Establish new transit stop improvement requirements.

[New Chapter] 16.204 Transit Access and Supportive Improvements

Development that is proposed adjacent to an existing or planned transit stop, as designated in an adopted transportation or transit plan, shall provide the following transit access and supportive improvements in coordination with the transit service provider:

- A. Reasonably direct pedestrian connections between the transit stop and primary entrances of the buildings on site. For the purpose of this Section, "reasonably direct" means a route that does not deviate unnecessarily from a straight line or a route that does not involve a significant amount of out-of-direction travel for users.
- **B.** The primary entrance of the building closest to the street where the transit stop is located that is oriented to that street.
- C. A transit passenger landing pad that is ADA accessible.
- D. An easement or dedication for a passenger shelter or bench if such an improvement is identified in an adopted plan.
- E. Lighting at the transit stop.
- F. Other improvements identified in an adopted plan.

Recommendation 9: Expand notice requirements to transportation agencies.

16.208.040 Type II Procedure (Administrative).

- C. Notice of Application for Type II Administrative Decision.
 - 1. Before making a Type II administrative decision, the Community Development Director shall mail notice to:
 - a. All owners of record of real property within 100 feet of the subject area not less than 20 days prior to the decision date;

[...]

- d. Any person who submits a written request to receive a notice; and
- e. Any governmental agency which is entitled to notice under an intergovernmental agreement entered into with the City. The City may shall notify other affected agencies, as appropriate, for review of the application. <u>Affected agencies include but</u> are not limited to other City and corresponding County departments; Warrenton-

Hammond School District; utility companies; and Sunset Empire Transportation

District and other transportation facility and service providers. ODOT shall be notified when there is a land division abutting a state facility for review of, comment on, and suggestion of conditions of approval for, the application.

16.208.050 Type III Procedure (Quasi-Judicial).

C. Notice of Hearing.

- 1. Mailed Notice. Notice of a Type III application hearing (or appeal) or Type I or II appeal hearing shall be given by the Community Development Director in the following manner:
 - a. At least 20 days before the hearing date, notice shall be mailed to:
 - i. The applicant and all owners or contract purchasers of record of the property which is the subject of the application;
 - ii. All property owners of record within 200 feet of the site (N/A for Type I appeal);
 - iii. Any governmental agency which has entered into an intergovernmental agreement with the City, which includes provision for such notice, or who is otherwise entitled to such notice. ODOT shall be notified when there is a land division abutting a state facility for review of, comment on, and suggestion of conditions of approval for, the application. <u>Transit and other transportation facility and service providers shall be notified of Type III application hearings when the <u>application potentially affects their facility or service.</u> [Owners of airports shall be notified of a proposed zone change in accordance with ORS 227.175.];</u>
 - iv. Any neighborhood or community organization recognized by the City Commission and whose boundaries include the property proposed for development;
 - [...]

16.208.070 General Provisions.

[...]

- C. Pre-Application Conferences.
 - Participants. When a pre-application conference is required, the applicant shall meet with the Community Development Director or his/her designee(s). <u>The Community</u> <u>Development Director shall invite City staff from other departments to provide</u> <u>technical expertise applicable to the proposal, as necessary, as well as other public</u> <u>agency staff such as transportation and transit agency staff.</u>

[...]

D. Applications.

- 3. Check for Acceptance and Completeness.
 - b. Completeness.

[...]

iv. Coordinated Review. When required by this Code, or at the direction of the Community Development Director, the City shall submit the application for review and comment to ODOT and other applicable City, county, state, and federal review agencies. <u>Potential applicable agencies</u> <u>include but are not limited to City Building, Public Works, Fire,</u> <u>Police, and Parks departments; Clatsop County Building, Planning,</u> <u>Parks, Public Health, Public Safety, and Public Works departments;</u> <u>Warrenton-Hammond School District; utility companies; and Sunset</u> <u>Empire Transportation District and other transportation facility and</u> <u>service providers.</u>

Recommendation 10: Update TPR "significant effect" citation.

16.232.060 Transportation Planning Rule Compliance.

- A. When a development application includes a proposed Comprehensive Plan amendment, or rezone, or land use regulation change, the proposal shall demonstrate it is consistent with the adopted transportation system plan and the planned function, capacity, and performance standards of the impacted facility or facilities. The proposal shall be reviewed to determine whether it significantly affects a transportation facility, in accordance with Oregon Administrative Rule (OAR) 660-012-0060. See also Chapter 16.256, Traffic Impact Study. Where it is found that a proposed amendment would have a significant effect on a transportation facility, the City will work with the applicant and, where applicable, with the roadway authority to modify the request or mitigate the impacts in accordance with the TPR and applicable law. Significant means the proposal would:
 - 1. Change the functional classification of an existing or planned transportation facility. This would occur, for example, when a proposal causes future traffic to exceed the capacity of a "collector" street classification, requiring a change in the classification to an "arterial" street, as identified by the Transportation System Plan; or
 - 2. Change the standards implementing a functional classification system; or
 - 3. Allow types or levels of land use that would result in levels of travel or access that are inconsistent with the functional classification of a transportation facility; or
 - 4. Reduce the level of service of the facility below the minimum acceptable level identified in the Transportation System Plan.
- B. Amendments to the Comprehensive Plan and land use standards which significantly affect a transportation facility shall assure that allowed land uses are consistent with the function, capacity, and level of service of the facility identified in the Transportation System Plan. This shall be accomplished by one of the following:
- 1. Limiting allowed land uses to be consistent with the planned function of the transportation facility; or
- 2. Amending the Transportation System Plan to ensure that existing, improved, or new transportation facilities are adequate to support the proposed land uses consistent with the requirement of the transportation planning rule; or
- 3. Altering land use designations, densities, or design requirements to reduce demand for automobile travel and meet travel needs through other modes of transportation.

Recommendation II: Update Traffic Impact Study (TIS) requirements.

16.256.010 Purpose.

The purpose of this chapter of the Warrenton Development Code is to implement Section 660-012-0045(2)(e) of the State Transportation Planning Rule that requires the City to adopt a process to apply conditions to development proposals in order to minimize impacts and protect transportation facilities (see Section 16.256.060). This chapter establishes the standards for when a proposal must be reviewed for potential traffic impacts; when a traffic impact study must be submitted with a development application in order to determine whether conditions are needed to minimize impacts to and protect transportation facilities; what must be in a traffic impact study; and who is qualified to prepare the study.

16.256.020 Typical Average Daily Trips.

Standards by which to gauge a<u>A</u>verage daily vehicle trips include: 10 trips per day per singlefamily household; five trips per day per apartment; and 30 trips per day per 1,000 square feet of gross floor area such as a new supermarket or other retail development shall be calculated using the rates and mythology in the most recent addition of the Institute of Transportation Engineers Trip Generation Manual.

16.256.030 When Required.

A traffic impact study <u>may will</u> be required to be submitted to the City with a land use application, when the following conditions apply :

- A. The development application involves a change in zoning or a plan amendment designation; or,
- B. The development shall cause one or more of the following effects, which can be determined by field counts, site observation, traffic impact analysis or study, field measurements, crash history, Institute of Transportation Engineers Trip Generation <u>mM</u>anual; and information and studies provided by the local reviewing jurisdiction and/or ODOT:

- 1. An increase in site traffic volume generation by 300 average daily trips (ADT) or more; or
- 2. An increase in ADT hour volume of a particular movement to and from the state highway by 20% or more; or
- 3. An increase in use of adjacent streets by vehicles exceeding the 20,000 pound gross vehicle weights by 10 vehicles or more per day; or
- 4. The location of the access driveway does not meet minimum sitesight distance requirements, or is located where vehicles entering or leaving the property are restricted, or such vehicles queue or hesitate on the state highway, creating a safety hazard; or
- 5. A change in internal traffic patterns that may cause safety problems, such as back up onto the highway or traffic crashes in the approach area.

16.256.040 Traffic Impact Study Requirements.

- A. Preparation. A traffic impact study shall be prepared by a professional engineer in accordance with OAR 734-051-180 registered in the State of Oregon. The study scope and content shall be determined in coordination with the City Public Works Director or designee. Traffic impact analyses required by Clatsop County or ODOT shall be prepared in accordance with the requirements of those road authorities. Preparation of the study report is the responsibility of the land owner or applicant.
- B. Transportation planning rule compliance, Section 16.232.060.

16.256.050 Approval Criteria.

The traffic impact study report shall be reviewed according to the following criteria:

- A. The study complies with the content requirements set forth by the City and/or other road authorities as appropriate;
- **B.** The study demonstrates that adequate transportation facilities exist to serve the proposed land use action or identifies mitigation measures that resolve identified traffic safety problems in a manner that is satisfactory to the road authority;
- C. For affected City facilities, the study demonstrates that the project meets mobility and other applicable performance standards established in the adopted transportation system plan, and includes identification of multi-modal solutions used to meet these standards, as needed; and
- D. Proposed design and construction of transportation improvements are in accordance with the design standards and the access spacing standards specified in the transportation system plan.

16.256.060 Conditions of Approval.

A. The City may deny, approve, or approve a proposal with conditions necessary to meet operational and safety standards; provide the necessary right-of-way for planned

improvements; and require construction of improvements to ensure consistency with the future planned transportation system.

- **B.** Construction of off-site improvements may be required to mitigate impacts resulting from development that relate to capacity deficiencies and public safety; and/or to upgrade or construct public facilities to City standards.
- C. Where the existing transportation system is shown to be impacted by the proposed use, improvements such as paving; curbing; installation of or contribution to traffic signals; and/or construction of sidewalks, bikeways, access ways, paths, or streets that serve the proposed use may be required.
- D. Improvements required as a condition of development approval, when not voluntarily
 provided by the applicant, shall be roughly proportional to the impact of the development
 on transportation facilities. Findings in the development approval shall indicate how the
 required improvements directly relate to and are roughly proportional to the impact of
 development.