

1500 NE Irving Street, Suite 200 Portland, Oregon 97232 (503) 423-4000

Executive Summary and Key Appendices from the Warrenton Wastewater Facility Plan

June 2023

Prepared for

City of Warrenton 45 SW 2nd Street Warrenton, Oregon 97146

KJ Project No. 2176013.00

Abbreviations

Dioxin	2,3,7,8-TCDD
DMR	daily monitoring report
EDU	equivalent dwelling units
EPA	United States Environmental Protection Agency
ES	executive summary
ETO	Energy Trust of Oregon
FRP	fiberglass reinforced plastic
ft	feet
GIS	Geographic Information System
GO	General Obligation
gpd	gallons per day
gpm	gallons per minute
HP	horsepower
HSOW	high-strength organic wastes
I&C	instrumentation and control
1&1	inflow and infiltration
IFA	Oregon Infrastructure Finance Authority
IGA	inter-governmental agreement
IO	input/output
IPPS	In-Plant Pump Station
Kcal	kilocalories
kcal/d	kilocalories per day
KJ	Kennedy Jenks
kWh	kilowatt/hour
LED	light-emitting diode
LF	linear feet
LOC	League of Oregon Cities
LOCAP	League of Oregon Cities Capital Asset Program
MBR	membrane bioreactor
MCC	motor control center
mg/L	milligrams per liter
MGD	million gallons per day
Mission	Mission Communications
mL	milliliters
mm	millimeters
MMDWF10	maximum monthly average dry-weather flow with a 10% probability of occurrence
MMWWF5	maximum monthly average wet-weather flows with a 20% probability of

	occurrence
NASSCO	National Association of Sewer Service Companies
NFPA	National Fire Protection Association
NPDES	National Pollutant Discharge Elimination System
O&M	Operations and maintenance
OAR	Oregon Adminstrative Rule
OSHA	Occupational Safety and Health Administration
P3	public-private-partnership
PACP	Pipeline Assessment and Certification Program
PCB	polychlorinated biphenyls
PDAF5	Peak Daily Average Flow associated with a 5-year storm
PFAS	Per- and polyfluoroalkyl substances
PIF5	Peak Instantaneous Flow, or Peak Hourly Flow attained during a 5-year PDAF
PLC	programmable logic controller
ppd	pounds per day
ppm	parts per million
PRC	Population Research Center
PSU	Portland State University
PSW	Pacific Seafoods-Warrenton
PVC	Polyvinyl Chloride
RMZ	resource management zoone
RPA	Reasonable Potential Analysis
SBR	sequencing batch reactor
SCADA	Supervisory control and data acquisition
TMDL	total maximum daily load
TSS	total suspended solids
UGB	Urban Growth Boundary
USDA-RUS	United States Department of Agriculture Rural Utilities Service
UV	ultraviolet
VFD	variable frequency drive
WAS	waste activated sludge
WIFIA	Water Infrastructure Finance and Innovation
WSDC	Wastewater System Development Charges
WWTP	wastewater treatment plant
ZID	zone of initial dilution

Executive Summary

The City of Warrenton (City), Oregon has experienced substantial population growth over the past several years, and that population growth is expected to continue. The City operates a Sequencing Batch Reactor (SBR) wastewater treatment plant (WWTP) that is rapidly nearing capacity due to increased flows associated with population growth. A condition assessment of the wastewater treatment facility revealed that some equipment is nearing the end of its useful life and needs to be replaced. For these reasons, the Warrenton WWTP needs an expansion and upgrade.

The City's wastewater collection system is also in need of upgrades. A condition assessment indicated that several sewer collection pipes have defects such as separated joints, holes, and root intrusion. Some manholes in the collection system also have damage. These defects contribute to inflow and infiltration (I&I) which increases peak flowrates to the WWTP and can negatively affect treatment efficiency. Given the City operates numerous pump stations within the sewer system, maintenance upgrades are ongoing and are recommended as part of this project for two pump stations.

Population projections from Portland State University's (PSU) Population Research Center (PRC) and United States Census data for Warrenton were used to project population through the 2043 plan year. It is estimated that Warrenton's population will increase by 2.32 percent (%) annually. This accounts for potential industrial growth in the service area. The 2043 population projection, flow projections, and loading projections are summarized in Table ES-1 below.

Population	10,403								
Flows in Million Gallons per Day (MGD)									
Annual Average Flow (AAF)	1.48								
Peak Daily Average Flow (PDAF ₅)	3.53								
Maximum Monthly Wet Weather Flow (MMWWF)	3.53								
Maximum Month Dry Weather Flow (MMDWF)	1.90								
Peak Instantaneous Flow, or Peak Hourly Flow (PIF ₅)	4.79								
Loading in Po	unds per Day (PPD)								
Peak Daily BOD₅	3470								
Average Daily BOD ₅	2540								
Peak Daily TSS	5210								
Average Daily TSS	2460								

Table ES-1: Warrenton 2043 Population, Flow, and Loading Projections Summary

Using these flow and loading projections, five liquid stream treatment alternatives were developed to address plant capacity, operational challenges and more stringent effluent

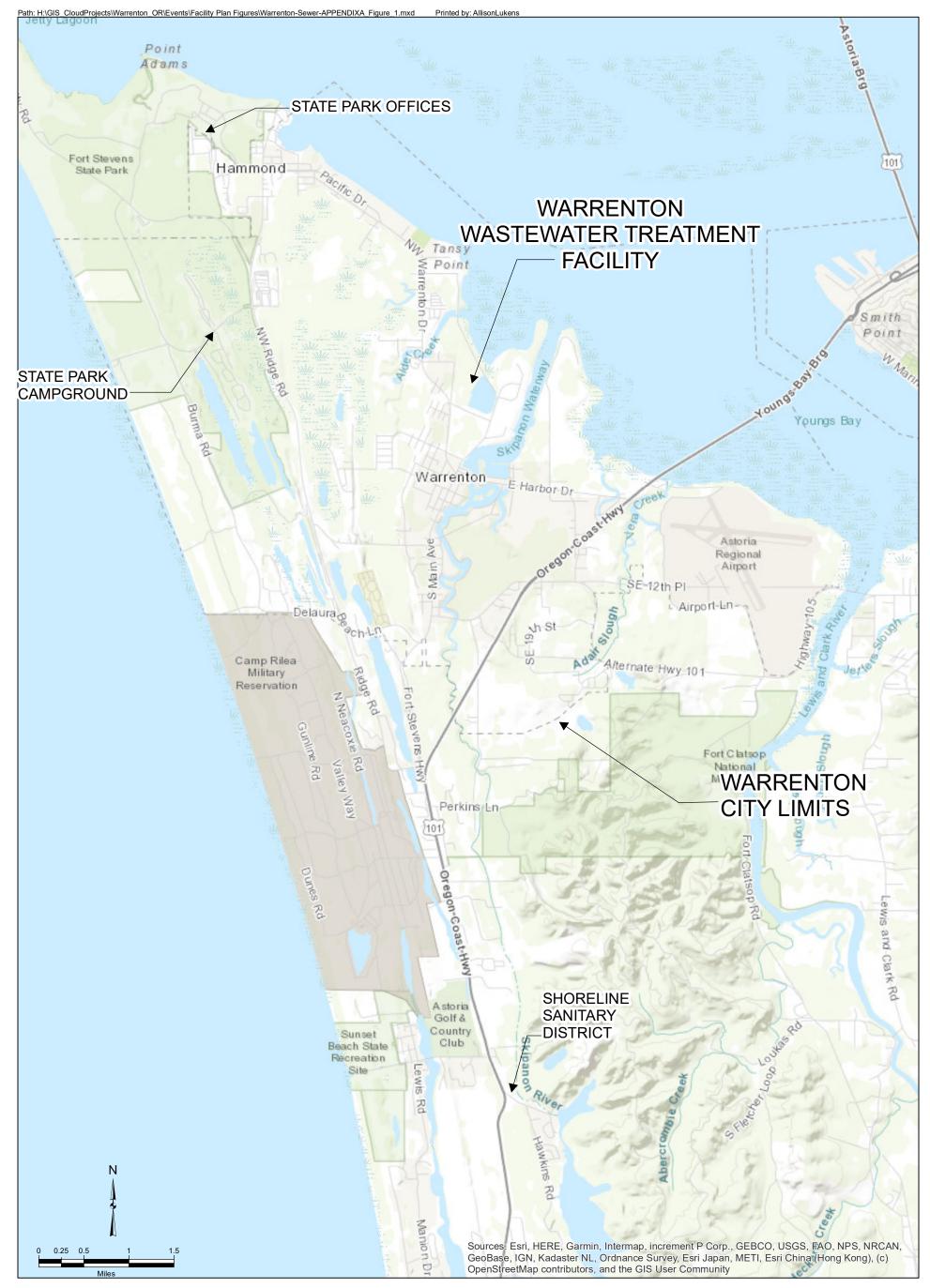

disinfection limits. The current plant is nearing capacity. As the flow capacity is exceeded by additional demand on the system, the effluent quality will diminish until the plant can no longer meet National Pollutant Discharge Elimination System (NPDES) permit limits. If the current mass load limits remain the same in future permit renewals, the plant will be required to produce a higher quality effluent to remain in compliance. This level of treatment may not be easily achieved using SBR treatment technology alone. In addition, the current SBR basin configuration leaves it vulnerable to birds foraging, causing suspended solids in the liquid stream, and windblown turbulence that reduces the plant's ability to adequately settle solids under high wind conditions. A higher effluent clarity or transmissivity combined with an ultraviolet (UV) disinfection system upgrade are needed to comply with more stringent fecal coliform and enterococci bacteria limits that the plant currently has difficulty meeting. Thus, the alternatives consider a higher effluent quality achieved through membrane or tertiary filtration technologies that are less susceptible to high wind. The liquid stream alternatives are summarized below:

- Alternative 1: Retrofit existing SBRs. Build two additional SBRs, add tertiary disk filters, and upgrade the UV disinfection system.
- Alternative 2: Convert existing SBR basins into deeper aeration basins and build two secondary clarifiers for a conventional activated sludge treatment facility. Add tertiary disk filters and upgrade UV disinfection system.
- Alternative 3: Convert existing SBR basins to membrane bioreactors (MBRs). Upgrade UV disinfection system.
- Alternative 4: Phased approach to increasing capacity of the existing SBRs. Build one new SBR basin to support 2032 projected flow and load (10-years of capacity) and build a second SBR basin in 2034 to support 2043 projections. Add tertiary disc filters.
- Alternative 5: Decommission the existing treatment facility. Build a new pump station and force main to convey flow to a different municipality's wastewater treatment facility.

These alternatives were compared based on capital cost, 20-year life cycle cost, regulatory compliance/permitting, expandability, operations and maintenance reliability/stability, and community impact. Alternative 3, convert the existing SBRs into MBRs, was found to be the most beneficial alternative by providing the highest quality treated effluent, the highest level of operational reliability to comply with current and future permit requirements. The initial capital cost for Alternative 3 is estimated to be **\$28,600,000** and the 20-year life cycle cost is estimated to be **\$37,800,000**. The capital costs include both costs to upgrade the plant, and improvements to the sewer collection system (pump stations and sewer piping). The 20-year life cycle cost accounts for inflation-adjusted operation and maintenance costs, energy consumption, and chemical costs.

The disadvantages of SBR operation at the Warrenton WWTP include the following:

• Birds foraging in the existing basins and windblown turbulence stir up sediment and cause settling issues in the SBR tanks. The existing tanks need to be covered to be used effectively. There is a significant cost to cover the SBR basins.


- SBRs take up a large footprint. Expansion of the existing SBR facility will require significant sludge removal and filling of the West Lagoon.
- SBR effluent quality may not meet permitted mass load limits as demand on the system increases over time.

The advantages of MBR operation at the Warrenton WWTP include the following:

- Solids are not removed by settling. Treated effluent quality relies on filtration and is consistent regardless of impact from wind or birds.
- Provides highest level of treatment of the alternatives evaluated to comply with future regulatory requirements/emerging contaminants of concern or potentially lower mass load limits.
- MBR treatment fits easily within the existing plant footprint, with the least amount of sludge lagoon infill.
- MBR is designed to handle estimated future peak flow and load.

Appendix A: Location, Aerial, and Soil Maps

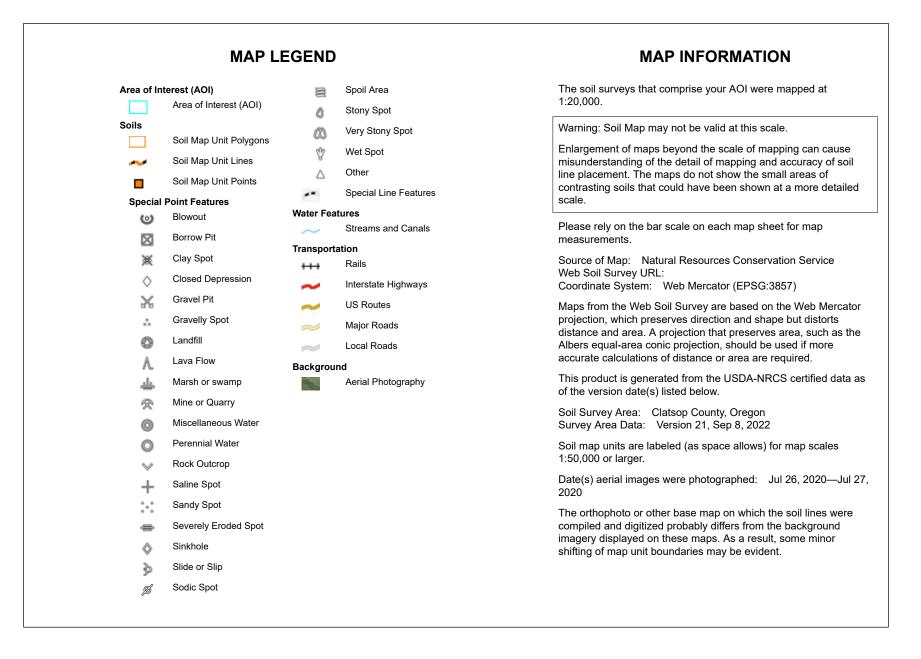
Kennedy/Jenks Consultants

WASTEWATER FACILITY PLAN CITY OF WARRENTON

SANITARY SEWER SYSTEM SERVICE AREA

KJ 2176013.00 MARCH 2023

APPENDIX A: FIGURE 1


Kennedy/Jenks Consultants WASTEWATER FACILITY PLAN CITY OF WARRENTON

AERIAL MAP OF CITY AND WWTP

> KJ 2176013.00 MARCH 2023

APPENDIX A: FIGURE 2

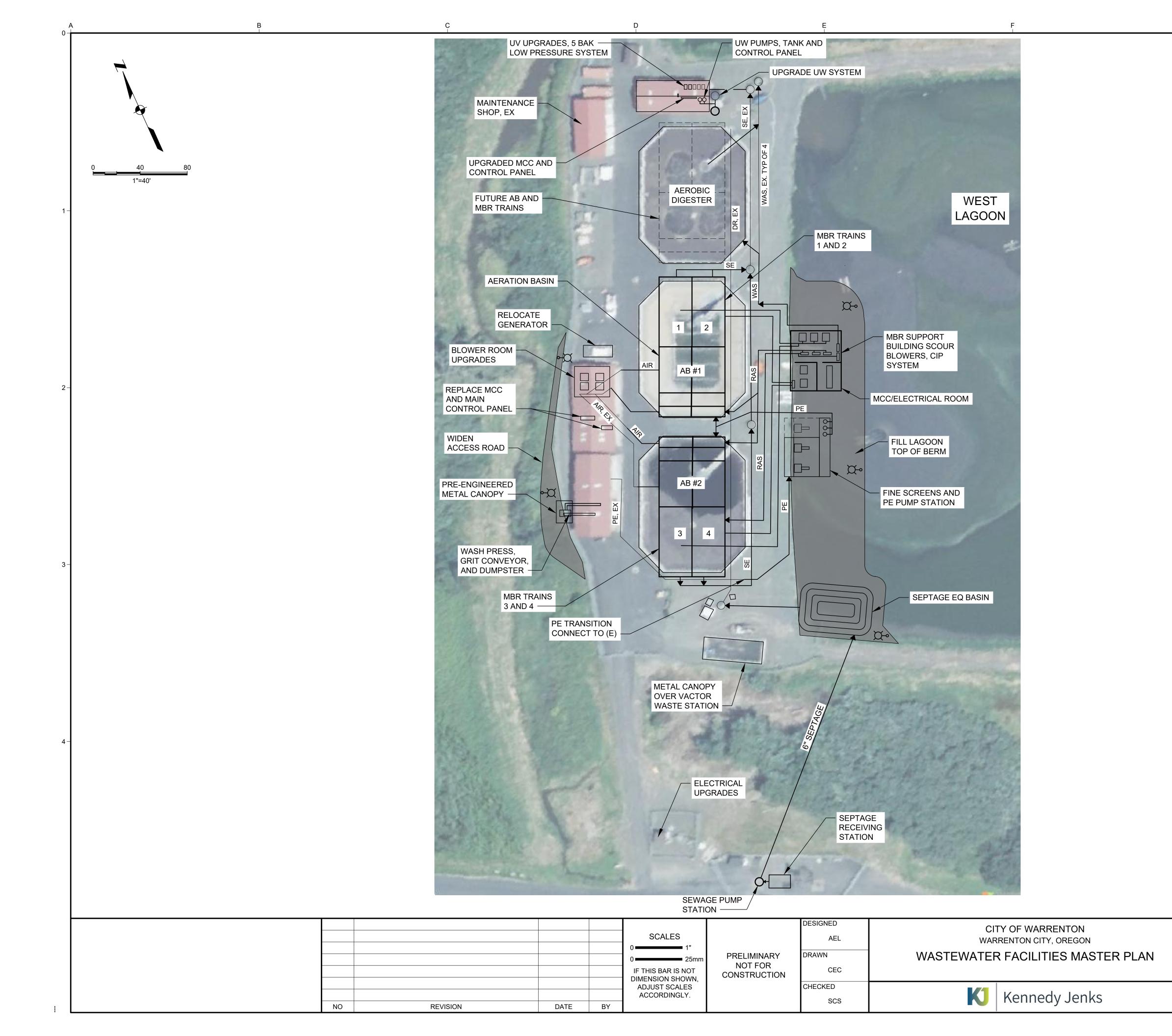
USDA

Section Description

Upstream water level = 16.41

Fine Screen w Auger

Theory used = Kirschmer Rack/screen invert = 16.5 Rack/screen width = 24 ft Flow through rack = 4.7 mgd Bar width = 1 in Bar spacing = 1 in Bar shape = Rectangular Angle of inclination = 60 degrees Downstream depth = 2.28 ft Approach velocity = 0.13 ft/s Rack/screen head loss = 0 ft


Main - Stop Gate 2

Opening type = rectangular gate Opening diameter/width = 24 in Gate height = 20.4 in Invert = 16.5 Number of gates = 1 Flow through gate(s) = 4.7 mgd Total area of opening(s) = 3.4 ft² Velocity through gate(s) = 2.14 ft/s 18.78

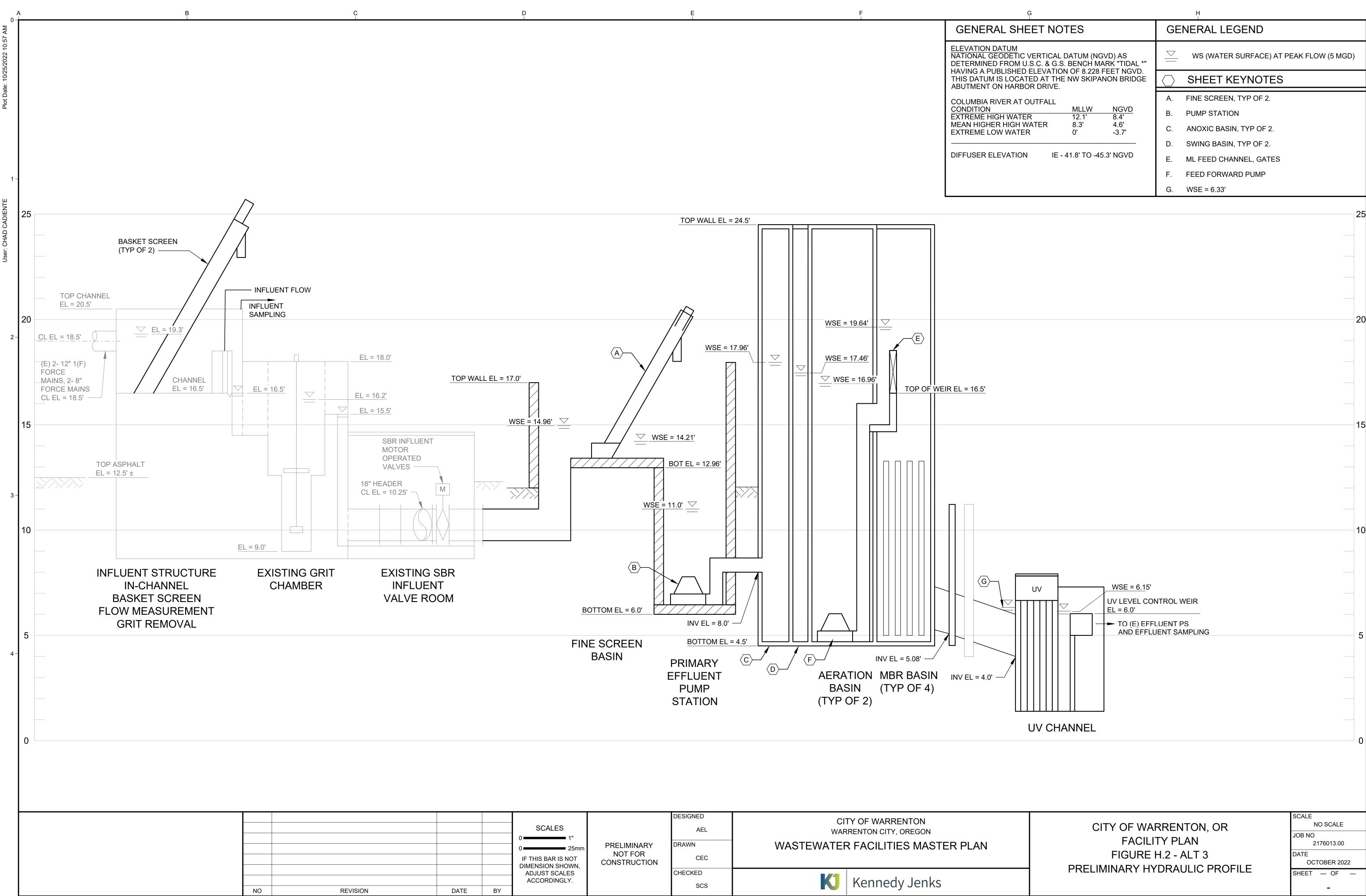
18.76

Appendix H: Alternative 3 Site Plan, Hydraulic Profile, and Modeling Results

Т	FGENI	

LEGEND	
	PROPOSED DEVELOPMENT
	FUTURE DEVELOPMENT
	SITE LIGHTING
PE	PRIMARY EFFLUENT
SE	SECONDARY EFFLUENT
WAS	WASTE ACTIVATED SLUDGE
RAS	RETURN ACTIVATED SLUDGE
MBR	MEMBRANE BIOREACTOR
CIP	CLEAN IN PLACE
MCC	MOTOR CONTROL CENTER
UV	ULTRAVIOLET DISINFECTION

н


FIGURE H.1 - ALTERNATIVE 3 CONCEPTUAL SITE PLAN CONVENTIONAL ACITIVATED SLUDGE

SCALE 1"=40'

JOB NO

2176013.00 DATE

OCTOBER 2022 SHEET --- OF ---

	SCALES 0 1" 0 25mm IF THIS BAR IS NOT DIMENSION SHOWN,	DESIGNED AEL DRAWN CEC	CITY OF WARRENTON WARRENTON CITY, OREGON WASTEWATER FACILITIES MASTER PLAN	CITY OF WARRENTON, OR FACILITY PLAN FIGURE H.2 - ALT 3	SCALE NO SCALE JOB NO 2176013.00 DATE OCTOBER 2022
BY	ADJUST SCALES ACCORDINGLY.	CHECKED SCS	K Kennedy Jenks	PRELIMINARY HYDRAULIC PROFILE	SHEET OF -

G		H
SHEET NOTES	GE	NERAL LEGEND
UM DETIC VERTICAL DATUM (NGVD) AS ROM U.S.C. & G.S. BENCH MARK "TIDAL *"		WS (WATER SURFACE) AT PEAK FLOW (5 MGD)
LOCATED AT THE NW SKIPANON BRIDGE HARBOR DRIVE.	\bigcirc	SHEET KEYNOTES
	Α.	FINE SCREEN, TYP OF 2.
WATER 12.1' 8.4'	В.	PUMP STATION
WATER 0' -3.7'	C.	ANOXIC BASIN, TYP OF 2.
ATION IE - 41.8' TO -45.3' NGVD	GENERAL LEGEND WS (WATER SURFACE) AT PEAK FLOW (5 MGD) SHEET KEYNOTES A. FINE SCREEN, TYP OF 2. B. PUMP STATION	
	0.	
		25
	S. BENCH MARK "TIDAL *" ON OF 8.228 FEET NGVD. E NW SKIPANON BRIDGE SHEET KEYNOTES MLLW NGVD 12.1' 8.4' 8.3' 4.6' 0' -3.7' -41.8' TO -45.3' NGVD A. FINE SCREEN, TYP OF 2. E. ML FEED CHANNEL, GATES F. FEED FORWARD PUMP	
		20

Appendix K: Complete Cost Estimates, 20-Year Life Cycle Costs, and Weighted Evaluation Criteria Table

Appendix K, Table 1

City of Warrenton, WW Facility Plan Capital Improvemen	nt Alternati	ves and 20-year Lifecycle Cos	ts			KENNE	DY/JENKS CONSULT/
						Prepared By:	SCS
						Date Prepared:	1/24/2023
						K/J Proj. No.	2276010*00
						Current at ENR	1%
						Escalated to ENR	2%
						nths to Midpoint of Construct	36
		Alternative #1	Alternative #2	Alternative #3	Alternative #4: Phase 1	Alternative #4: Phase 2	Alternative #5
a Item	Unit	Two New SBR Basins, Rehab Three Existing Basins	Three New Aeration Basins and Secondary Clarifiers	Four MBR Basins	One New SBR	Second SBR and One EQ Basin	Pumpstation and Forcema Seaside WWTP
00 5th Avenue Pump Station Electrical ¹	LS	\$75,162	\$75,162	\$75,162	\$75,162		
00 Headworks Improvements	LS	\$926,449	\$926,449	\$926,449	\$926,449		
D5 Earthwork, Site Piping	LS	\$1,874,176	\$2,015,987	\$1,609,656	\$1,248,522	\$509,222	
	LS					\$509,222	
20 Septage Receiving Improvements	LS	\$730,826	\$730,826	\$730,826	\$730,826		
30 Vactor Waste Upgrades, PEMB		\$245,652	\$245,652	\$245,652	\$245,652		
20 Fine Screens	LS			\$1,311,602			
0 Membrane Basin	LS			\$6,651,255			
30 MBR Support Building	LS			\$1,011,615			
00 Blower Room Rehab	LS	\$560,483	\$1,492,891	\$536,750	\$504,702	\$56,200	
20 Generator with sub base tank	LS	\$337,461	\$337,461	\$337,461		\$337,461	
00 2 New SBRs & Post EQ Basin and Pumps	LS	\$3,033,200				\$2,542,606	
10 1 New SBR	LS				\$1,604,119		
0 Existing SBR Cover with Steel Buildings	LS	\$3,217,500			\$3,217,500	\$0	
0 Rehab Existing SBR Units	LS	\$886,358			\$886,358	\$0	
Underdrain/ basin drain sewer	LS						
0 Aeration Basins, 3 at 90' x 90'	LS		\$5,613,998				
0 Secondary Distribution Structure	LS		\$173,682				
0 Secondary Clarifiers, 2 at 55' dia.	LS		\$2,565,017				
0 RAS/WAS Pump Station	LS		\$476,111				
0 WAS Manhole Improvements	LS	\$55,088	\$55,088			\$55,088	
0 New Tertiary Filters	LS	\$955,908	\$955,908		\$927,234	\$24,000	_
00 Replace UV System, In Channel	LS	\$379,063	\$379,063	\$175,000	\$303,250	\$539,003	
0 Utility Water System Upgrades	LS	\$179,227	\$179,227	\$179,227	\$179,227		-
	LS				\$179,227		
0 Collections 1 - Pump Station Rehab		\$552,062	\$552,062	\$552,062		\$552,062	\$552,062
0 Collections 2 - I/I Reduction, Sewer Rehab	LS	\$850,000	\$850,000	\$850,000		\$850,000	\$850,000
00 Seaside Piping and Pump Stations	LS						\$17,702,934
0 Seaside Plant Expansion SDCs	LS						\$5,184,268
Project Total		\$14,858,614	\$17,624,583	\$15,192,717	\$10,849,000	\$5,465,642	\$24,289,264
Div 1 Costs	12%	\$1,783,034	\$2,114,950	\$1,823,126	\$1,301,880	\$655,877	\$2,914,712
Subtotal		\$16,641,648	\$19,739,533	\$17,015,843	\$12,150,880	\$6,121,519	\$27,203,976
Contractor Overhead and Profit	15%	\$2,496,247	\$2,960,930	\$2,552,376	\$1,822,632	\$918,228	\$4,080,596
Subtotal		\$19,137,895	\$22,700,463	\$19,568,219	\$13,973,512	\$7,039,747	\$31,284,572
Contingency	20%	\$3,827,579	\$4,540,093	\$3,913,644	\$2,794,702	\$1,407,949	\$6,256,914
Total Construction Cost with Markups		\$22,966,000	\$27,241,000	\$23,482,000	\$16,769,000	\$8,448,000	\$37,542,000
Escalation		\$1,377,960	\$1,634,460	\$1,408,920	\$1,006,140		\$2,252,520
Collection System Project Cost		\$1,410,000	\$1,410,000	\$1,410,000	\$0	\$1,410,000	\$1,410,000
Construction Subtotal		\$14,860,000	\$17,630,000	\$15,200,000	\$10,850,000	\$5,470,000	\$24,290,000
Total Construction Cost with markups and escalation ²		\$24,400,000	\$28,900,000	\$24,900,000	\$17,800,000	\$8,500,000	\$39,800,000
Engineering and Construction Admin.	15%	\$3,660,000	\$4,335,000	\$3,735,000	\$2,670,000	\$1,275,000	\$5,970,000
Total Project Cost ²	13%						
20-year Lifecycle Costs ³		\$28,100,000 \$38,000,000	\$33,200,000 \$41,100,000	\$28,600,000 \$37,800,000	\$20,500,000	\$9,800,000 7,700,000	\$45,800,000 \$49,600,000

Notes: 1. The major electrical upgrades include replacement of the plant MCC located in the existing laboratory. Covered by EI&C percentages in each alternative. 2. Costs rounded to the nearest \$100,000 to represent overall level of estimate accuracy. Capital cost represents 2023 dollars. 3. 20-year Lifecycle Costs represent the total cost of operation including, capital, labor, electricity replacement parts and chemicals in 2023 dollars.

Treatment Alternative Weighted Matrix Comparison												
		Alternative 1: SBR Treatment Expansion			rnative 2: Aeration Basin and Secondary Clarifiers	Alt	Alternative 3: Membrane Bioreactor		Alternative 4: Phased SBR Projects		Alternative 5: Pump to Seaside WRF	
	Weight	Score	Description	Score	Description	Score	Description	Score	Description	Score	Description	
Capital Cost	25%	4	This alternative has the second-lowest initial capital cost.	2	This alternative has the second- highest initial capital cost.	3	This alternative has the middle- ranking initial capital cost.	4	This alternative has the lowest initial capital cost for the first phase of the expansion, but does not provide the full 20-year capacity required.	1	This alternative has the highest initial capital cost.	
20-Yr Life Cycle Cost	25%	4	This alternative has the second-lowest	2	This alternative has the second-	3	This alternative has the middle-	5	This alternative has the lowest 20-	1	This alternative has the highest	
Regulatory Compliance / Permitting	20%	3	20-year life cycle cost. SBRs will require disk filters to meet today's regulatory limits. This alternative may have difficulty meeting increased standards in the future.	3	highest 20-year lifecycle cost. Activated sludge treatment will require disk filters to meet today's regulatory limits. This alternative may have difficulty meeting increased standards in the future.		ranking 20-year life cycle cost An MBR provides a significantly higher level of treatment than an SBR or aeration basin and secondary clarifier without a tertiary filtration system. The effluent quality from an MBR is comparable to effluent quality from a disk filter. This technology is likely to be suitable for increased regulations in the future.	3	year life cycle cost. SBRs will require disk filters to meet today's regulatory limits. This alternative may have difficulty meeting increased standards in the future.	3	20-year lifecycle cost. This alternative will likely provid adequate treatment for today's standards, but may have difficulty meeting increased standards in the future.	
Expandability	15%	3	This alternative is easily expandable, but expansion after 2042 would require additional dewatering and filling of the west lagoon. Additional SBRs cover a significant footprint.	3	This alternative is easily expandable, but expansion would require additional dewatering and filling of the west lagoon. Future expansion after the 2042 expansion would likely include an additional disk filter, aeration basin, and secondary clarifier. These items have larger footprints.		This alternative is the easiest to expand. MBRs have the smallest footprint of all four alternatives. Expansion of this alternative post- 2042 would not require additional dewatering of the west lagoon, but converting the northernmost SBR into an MBR.	3	This alternative is easily expandable, but expansion after 2042 would require additional dewatering and filling of the east lagoon. Additional SBRs cover a significant footprint.	2	Expanding this alternative after 2042 would include both expanding the Seaside wastewater treatment facility and upsizing the Warrenton pump station and forcemain. This alternative would be the largest effort and likely the most costly to expand.	
Operations and Maintenance Reliability/Stability	10%	2	SBRs have been difficult to operate at the facility and this is not the most reliable option. Birds come into contact with water in the SBR, which causes settling issues. Nets have mitigated this issue somewhat, but the nets can freeze during extreme weather events and cause operational difficulties. The heavy wind in Warrenton also causes settling issues. Installation of covers over existing SBRs mitigates this.		Aeration basins and secondary clarifiers are generally easy to operate and maintain. This technology consumes significant chemicals.	4	The MBR technology is the most reliable alternative, and the easiest to operate. Most of the MBR process is automated. MBRs are not susceptible to settling issues or impacts from birds because the basins are covered, as opposed to SBRs. MBRs require regular cleaning and consume significant chemicals.		SBRs have been difficult to operate at the facility and is not the most reliable option. Birds come into contact with water in the SBR, which causes settling issues. Nets have mitigated this issue somewhat, but the nets can freeze during extreme weather events and cause operational difficulties. The heavy wind in Warrenton also causes settling issues. Installation of aluminum covers over existing MBRs mitigates this.		This alternative would significantly reduce the operations and maintenance duties of Warrenton.	
Community Impact	5%	4	This design is compatible with surrounding land use and plans for a future regional biosolids solution. Odors will not likely increase.	4	This design is compatible with surrounding land use and plans for a future regional biosolids solution. Odors will not likely increase.	4	This design is compatible with surrounding land use. The high level of treatment that MBRs provide will benefit future development plans for a regional biosolids solution.	4	This design is compatible with surrounding land use and plans for a future regional biosolids solution. Odors will not likely increase.		This alternative would result in the least community impact to the Warrenton area. Discontinuing the Warrenton Wastewater Treatment facility would reduce odor in the vicinit of the plant and free up the site for other public uses.	
Total Score		20		13		20		17		12		
		20		10				L''		12		

FAVORABLE/BENEFICIAL

UNFAVORABLE/DIFFICULT